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Patrick	Frank	
Earth	and	Space	Science	Manuscript	2017EA000256	
Response	to	Review	#3	
	
Summary	response:	

1. The	reviewer	misconstrued	eqn.	6	to	be	about	climate	physics,	rather	than	about	the	
behavior	of	climate	models;	item	1.	

2. The	reviewer	mistakenly	assigned	the	±4	Wm-2	of	uncertainty	in	tropospheric	thermal	
energy	flux	to	GHG	forcing;	items	2.2	and	3.	

3. The	reviewer	misconstrued	statistical	uncertainty	as	physical	error;	items	2.2,	2.3,	2.4,	3,	
and	4.	

4. The	reviewer	has	confused	a	mean	of	error	with	a	mean	of	uncertainty;	item	2.3.	
5. The	reviewer	apparently	does	not	understand	propagation	of	error,	item	4.	
6. Throughout,	the	reviewer	neglected	the	"±"	sign	when	referencing	the	±4	Wm-2,	i.e.,	it	is	

always	written	as	a	positive	sign	4	Wm-2.	This	illustrates	the	reviewer's	invariable	
misconstrual	of	statistical	uncertainty	as	a	physical	error.	

	
The	reviewer	is	quoted	in	italics	below,	followed	by	the	indented	author	response.	
	
The	review	preamble	is	not	addressed	except	to	note	that	the	reviewer	is	correct	in	observing	
that	the	manuscript	analysis	calls	into	question	historical	climate	projections.	
	
1.	The	theory	is	based	on	linear	statistics;	however,	temperature	power	4	is	calculated	for	
radiation.	This	cannot	be	linearized	for	33	K	temperature	difference.	This	misunderstanding	
together	with	Eq.	6	may	happen	to	represent	its	effect	on	radiation,	but	the	theoretical	basis	is	
not	solid.	
	

1.	The	reviewer	refers	to	the	Stefan-Boltzmann	equation.	Nothing	in	the	manuscript	
contradicts	the	S-B	relationship.	Nothing	in	the	manuscript	depends	upon	the	S-B	
equation.	

	
	 Manuscript	eqn.6	does	not	concern	climate	physics,	or	the	Stefan-Boltzmann	4th	power	
relationship.	Equation	6	concerns	the	behavior	climate	models	and	the	linear	relation	the	
models	exhibit	between	simulated	air	temperature	and	GHG	forcing.	

	
	 Manuscript	Figures	2,3	4,	8	and	9	demonstrate	this	linear	relationship,	as	do	Supporting	
Information	Figure	S1,	and	Figure	S3	through	Figure	S8.	

	
	 Further	in	box	1.3	of	[Pyle	et	al.,	2016]	the	IPCC	itself	admits	the	linear	relationship	
between	radiative	forcing	and	surface	air	temperature	as	ΔTs = λΔF ,	where	λ	is	a	
climate	sensitivity	that	varies	from	model	to	model.	

	
	 The	linear	statistics	of	error	propagation	follow	from	the	demonstration	that	models	
project	air	temperature	linearly	with	forcing.	The	basis	for	linear	statistics	is	obvious.	
Linear	statistics	is	an	empirical	consequence,	not	an	assumption.	

	
	 The	reviewer	has	misunderstood	the	most	basic	point,	namely	that	the	analysis	concerns	
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the	behavior	of	climate	models.	It	does	not	concern	climate	physics.	
	
	

2.	The	"forcing"	term	used	here	is	confusing.	Sometimes	it	is	for	climatology,	and	sometimes	for	
change.	
	

2.1	it	is	difficult	to	see	the	reviewer's	problem	with	the	use	of	"forcing."	Manuscript	line	144	
defined	water-vapor-enhanced	CO2	forcing.	This	meaning	is	used	throughout.	The	term	
has	this	standard	usage	everywhere	in	the	manuscript.		

	
2.2	The	major	problem	here	is	the	4	m	w-2	error	is	for	total	F0	but	not	dFi.	
	

2.2	F0	is	the	assigned	greenhouse	forcing	of	a	simulation	base-state,	while	dFi	is	the	annual	
change	in	GHG	forcing	designated	within	a	chosen	projection	scenario.		

	
	 In	stark	contrast,	the	±4	Wm-2	derives	from	cloud	feedback	error;	from	a	simulation	error.	
It	is	not	a	GHG	forcing	error;	it	is	no	part	of	F0,	nor	part	of	dFi.		

	
	 The	±4	Wm-2	is	the	mean	annual	uncertainty	in	simulated	tropospheric	thermal	energy	

flux,	which	[Lauer	and	Hamilton,	2013]	derived	as	±σ LWCF =
1
N

σ iLWCF
2

i=1

N

∑ ,	where	

subscript	"LWCF"	is	longwave	cloud	forcing,	N	is	the	number	of	CMIP5	climate	models	in	
their	study,	and	±σ iLWCF

	is	the	mean	annual	uncertainty	in	longwave	forcing	for	an	

individual	CMIP5	climate	model.	The	empirical	±σ iLWCF
	is	obtained	from	calibration	against	

20	years	of	simulation	hindcast.	
	
	 That	is,	±4	Wm-2	is	an	uncertainty	in	simulated	tropospheric	thermal	flux	that	conditions	
the	accuracy	of	the	simulated	effect	of	GHG	forcing.	Its	status	as	a	simulation	conditional	
is	why	it	must	be	entered	into	manuscript	eqn.	6.		

	
	 In	other	words,	GHG	forcing	becomes	part	of	the	tropospheric	thermal	flux.	Uncertainty	in	
the	simulated	tropospheric	thermal	flux	(±4	Wm-2)	impacts	resolution	of	the	thermal	
effect	of	GHG	forcing.	There	is	no	escaping	the	problem	of	model	resolution.	

	
	 Once	again,	the	±4	Wm-2	is	neither	part	of	F0,	nor	part	of	dFi.	
	

2.3	The	annual	error	is	annual	mean	of	the	error,	but	not	error	generated	every	year.	
	

2.3	The	±4	Wm-2	is	the	annual	mean	of	uncertainty,	not	the	mean	of	error.	A	mean	of	error	

is	µε =
1
N

εi
i=1

N

∑ ,	where	εi	is	some	simulation	error.	The	mean	of	uncertainty	is	

±µu =
1
N

εi
2

i=1

N

∑ .	In	a	mean	of	error,	errors	of	opposite	sign	cancel.	Signs	to	not	cancel	in	

a	mean	of	uncertainty.	
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	 [Lauer	and	Hamilton,	2013]	reported	a	model	calibration	experiment.	The	±4	Wm-2	is	a	20-
year	mean	uncertainty	statistic	derived	from	27	CMIP5	climate	models	(540	model	
simulation	years).	This	±4	Wm-2	is	representative	of	the	annual	uncertainty	in	simulated	
tropospheric	thermal	flux	for	any	CMIP5	projection.	

	
	 Understanding	the	difference	between	error	and	uncertainty	is	critical.	Error	is	a	physical	
quantity,	e.g.,	simulated	minus	observed.	Uncertainty	is	a	statistic	concerning	the	state	of	
knowledge	(certainty	of	result).	It	is	propagated	into	a	result	when	an	error	calculation	is	
unavailable;	that	is,	when	the	physically	correct	magnitude	is	not	independently	known.		

	
	 Typically,	uncertainty	is	derived	from	a	calibration	experiment,	in	which	the	accuracy	of	a	
model	(or	an	experimental	method)	is	determined	by	its	ability	to	reproduce	a	known	
magnitude.	The	accuracy	statistic	is	then	imported	into	a	model	projection	as	an	indicator	
of	reliability	of	result,	e.g.,	for	a	future	climate	where	the	physically	true	value	is	unknown.	

	
	 When	a	sequential	series	of	calculations	is	performed,	each	one	of	which	entrains	a	
known	uncertainty,	then	the	final	uncertainty	is	the	calibration	uncertainty	for	each	step	
propagated	through	the	calculational	sequence.[Vasquez	and	Whiting,	1998;	2006]	

	
	 In	a	climate	projection,	error	is	produced	in	every	simulation	step.	However,	neither	the	
sign	nor	the	magnitude	of	error	is	known.	The	only	known	is	the	uncertainty.		

	
	 Uncertainty	necessarily	increases	with	every	simulation	step,	because	the	state	of	
knowledge	concerning	the	relative	phase-space	positions	of	the	simulated	climate	and	the	
physically	true	climate	are	unknown.	The	relative	phase-space	positions	evolve	in	an	
unknown	manner	in	simulation	time.		

	
	 When	only	uncertainty	is	available,	the	magnitude	of	error	is	unknown.	The	true	but	
unknown	physical	error	may	be	small	even	though	the	uncertainty	is	large	(e.g.,	see	[JCGM,	
100:2008]	"Note"	page	6).	

	
	 All	of	this	was	extensively	discussed	under	manuscript	Section	2.4.3,	under	Section	3,	lines	
725ff,	as	well	as	in	Supporting	Information	Section	7	and	most	especially	SI	Section	10.2	
"The	meaning	of	predictive	uncertainty".	

	
	 A	new	paragraph	has	been	added	to	Section	2.4.1	discussing	the	meaning	of	a	calibration	
experiment.	

	
2.4	The	cumulative	effect	is	fake.	This	is	the	reason	for	~100	times	overestimation	of	the	error.	
	

2.4	Propagation	of	uncertainty	through	a	calculation	is	a	standard	of	error	analysis	in	the	
physical	sciences	[Bevington	and	Robinson,	2003;	JCGM,	100:2008;	Taylor	and	Kuyatt.,	
1994].	It	is	properly	applied	to	the	expectation	values	of	complex	non-linear	models	
[Helton	et	al.,	2010;	Roy	and	Oberkampf,	2011;	Vasquez	and	Whiting,	2006].		

	
	 While	the	growth	of	uncertainty	is	often	unfortunate	to	a	conclusion,	it	is	not	"fake."		
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	 Response	sections	2.3	and	2.4	follow	from	the	reviewer	mistake	noted	in	response	item	
2.2,	namely	that	the	±4	Wm-2	is	an	uncertainty	in	feedback.	It	is	not	part	of	F0,	nor	part	of	
dFi	

	
3.	The	4	w	m-2	error	itself	is	for	F0,	which	means	the	error	for	GHG	global	warming	forcing	
should	be	dF*12.1%	but	not	F0*12.1%.	
	

3.	The	mistake	represented	by	review	item	3	was	resolved	in	response	item	2.2	above.	
However,	the	reviewer	should	have	noted	that	the	±12.1%	error	in	cloud	cover	
conditioned	forcing	nowhere	in	the	manuscript	analysis;	neither	F0	nor	dFi.		

	
	 Again,	±4	Wm-2	is	the	annual	mean	uncertainty	in	CMIP5	longwave	cloud	forcing	(LWCF).	It	
is	not	part	of	F0,	which	is	the	base-year	greenhouse	gas	forcing,	nor	part	of	dFi,	which	is	
the	annual	change	in	greenhouse	gas	forcing.	

	
	 It	is	not	clear	at	all	how	the	reviewer	has	made	the	association	of	F0	or	dFi	with	the	rms	
LWCF	error	because	neither	association	appears	anywhere	in	the	manuscript.	

	
	 As	noted	in	response	item	2.2,	±4	Wm-2	enters	eqn.	6	because	it	represents	the	
uncertainty	in	the	simulated	tropospheric	energy	thermal	flux,	of	which	GHG	forcing	
becomes	a	part.		

	
	 The	±4	Wm-2	annual	uncertainty	width	is	then	the	background	against	which	the	average	
annual	0.035	Wm-2	GHG	forcing	increase	must	be	resolved.	

	
	 As	the	background	annual	simulation	uncertainty	is	about	±114	times	larger	than	the	
annual	GHG	perturbation,	it	is	quite	clear	that	resolution	of	any	GHG	effect	is	impossible.	

	
4.	The	conclusion	is	obviously	wrong,	since	the	annual	error	should	have	existed	even	without	
global	warming.	The	climate	models	would	go	everywhere	if	this	amount	of	error	exists.	
	
	

4.	The	reviewer	is	correct	that	the	annual	uncertainty,	reflective	of	known	model	error,	
should	exist	apart	from	global	warming.	

	
	 Climate	models	are	known	to	make	large	energetic	errors	[Collins	et	al.,	2011;	Soon	et	al.,	
2001].	However,	models	are	tuned	to	known	observables,	such	as	the	TOA	radiation	
balance.	It	is	therefore	not	surprising	that	their	outputs	are	both	reasonable	with	respect	
to	past	observables	and	comparable	among	models.			

	
	 [Kiehl,	2007]	has	noted	that	tuning	produces	parameters	with	offsetting	errors,	which	is	
why	models	with	very	different	climate	sensitivities	can	nevertheless	produce	the	same	
centennial	trend	in	air	temperature.	

	
	 Any	look	at	a	perturbed	physics	study,	such	as	[Rowlands	et	al.,	2012;	Yamazaki	et	al.,	
2013]	show	large	disparities	among	climate	models	and	model	runs.		
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	 Therefore	the	projection	variability	to	which	the	reviewer	alludes	is	present,	but	is	
suppressed	by	model	tuning,	and	is	unappraised	by	the	way	that	projection	uncertainty	is	
assessed	in	the	field,	namely	as	relative	to	an	ensemble	mean	rather	than	as	relative	to	
physical	accuracy.		

	
	 These	disparities	among	models	are	due	to	parameter	uncertainties,	only.	They	do	not	
reveal	errors	due	to	incorrect	or	incomplete	physical	theory.	Nor	do	they	reveal	the	
disparities	relative	to	a	physically	true	climate	state.	

	
	 The	manuscript	analysis	shows	that	the	annual	average	±4	Wm-2	LWCF	uncertainty	arises	
within	the	models	themselves.	It	is	not	part	of	F0	or	dFi.	As	an	inherent	model	error,	LWCF	
uncertainty	enters	into	every	single	step	in	a	simulation,	and	necessarily	propagates	into	
and	through	a	projection.	The	inevitable	result	is	an	expanding	uncertainty	envelope	in	a	
climate	futures	projection.	
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