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Patrick	Frank	
Earth	and	Space	Science	Manuscript	2017EA000256	
Response	to	Review	#4	
	
Summary	response:	
	

1. Physics	is	about	causality,	not	plausibility;	item	1.	
2. "Plausible,"	unconditioned	with	a	physically	valid	uncertainty	envelope,	has	no	physical	meaning,	

item	1.	
3. The	systematic	error	propagation	model	follows	widely	published	recommendations,	items	2	and	

3.1-3.4.	Appropriate	references	have	been	added	to	the	revised	manuscript.	
4. The	reviewer	misconstrued	the	±4	Wm-2	LWCF	uncertainty	statistic	as	implying	physical	errors	of	

sequentially	opposite	sign,	item	3.5.	
5. The	centennial	projection	uncertainty	is	insensitive	to	the	time	over	which	calibration	error	is	

root-summed;	item	4.	
6. The	reviewer	has	misconstrued	the	±4	Wm-2	LWCF	uncertainty	statistic	as	a	GHG	forcing	error;	

items	7	and	8.1.	
	
The	reviewer	is	quoted	in	italics	below,	followed	by	the	indented	author	response.	The	reviewer's	
preamble	is	not	addressed,	except	to	observe	that	the	response	below	belies	the	reviewer's	conclusory	
recommendation.	
	
1.	Lines	60-16:	The	author	claims	that	estimating	the	uncertainty	in	climate	predictions	by	examining	
model	variability	relative	to	an	ensemble	mean	is	incorrect.	However,	in	the	absence	of	experimental	
observations	(which	occurs	when	making	a	forecast),	then	this	approach	is	in	fact	one	method	for	
estimating	the	uncertainty	due	to	the	form	of	the	models.	This	approach	is	known	as	“alternative	plausible	
models”	and	is	discussed	in	Morgan	and	Henrion	(1990)	and	Cullen	and	Frey	(1999).			
	

1.1	Physics	is	about	causality,	not	plausibility.	Projections	of	future	physical	states	are	credible	only	
when	the	physical	models	are	known	to	produce	unique	and	physically	accurate	solutions	when	
tested	against	known	physical	observables.	Climate	models	do	not	meet	this	standard.		
	
A	reproduced	recent	air	temperature	trend,	achieved	by	tuning	a	climate	model,	is	neither	a	unique	
solution	nor	a	demonstration	of	accuracy.	"Plausibility"	unconditioned	by	a	physically	valid	
uncertainty	envelope	is	physically	meaningless.	This	problem	is	illustrated	below	in	Figure	1,	taken	
from	[Lauer	and	Hamilton,	2013;	Rowlands	et	al.,	2012].	The	discussion	following	the	Figure	applies	
equally	to	a	hindcasted	20th	century	air	temperature	trend.	
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Figure	1.	Original	Legend:	"Evolution	of	uncertainties	in	reconstructed	global-mean	temperature	
projections	under	SRES	A1B	in	the	HadCM3L	ensemble."	The	embedded	black	line	in	the	original	is	the	
observed	surface	air	temperature	record.	The	horizontal	black	lines	at	1	C	and	3	C,	and	the	vertical	
red	line	at	year	2055,	are	author-added.	
	
Figure	1	shows	a	set	of	perturbed	physics	projections	wherein,	"a	single	model	structure	is	used	and	
perturbations	are	made	to	uncertain	physical	parameters	within	that	structure..."	[Collins	et	al.,	2011].	
That	is,	a	perturbed	physics	experiment	shows	the	variation	in	climate	projections	as	model	
parameters	are	varied	step-wise	across	their	physical	uncertainty	width.	
	
The	horizontal	black	lines	show	the	HADCM3L	produces	the	same	air	temperature	change	for	
thousands	of	climate	energy	states.		
	
For	example,	the	upper	black	line	shows	that	a	constant	3	C	increase	in	air	temperature	is	projected	
for	every	single	annual	climate	energy	state	between	2030-2080,	depending	on	parameter	set.	
	
The	identical	logic	applies	to	the	vertical	red	line	showing	that	the	HADCM3L	projects	thousands	of	air	
temperatures	for	the	single	2055	climate	energy	state.	Every	single	annual	climate	energy	state	
between	1976-2080	includes	dozens	of	HADCM3L	simulated	air	temperatures.		
	
None	of	the	different	parameter	sets	producing	these	simulated	temperatures	is	known	to	be	any	
more	physically	correct	than	any	other	set.	There	is	no	way	to	decide	which	is	physically	correct	
among	all	the	different	choices	of	projected	annual	air	temperature.	
	
This	set	of	examples	shows	that	the	HADCM3L	cannot	produce	a	unique	solution	to	the	problem	of	
the	climate	energy	state.	Nor,	by	analogy,	can	any	other	advanced	climate	model.		
	
No	set	of	model	parameters	is	known	to	be	any	more	valid	than	any	other	set	of	model	parameters.	
No	projection	is	known	to	be	physically	correct,	or	any	more	physically	correct	than	any	other	
projection.		
	
This	means,	for	any	given	projection,	the	internal	state	of	the	model	is	not	known	to	reveal	anything	
about	the	underlying	physical	state	of	the	true	terrestrial	climate.	More	simply,	the	model	cannot	tell	
us	anything	at	all	about	the	physically	real	climate,	at	the	level	of	resolution	of	greenhouse	gas	forcing.		
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The	same	is	necessarily	true	for	any	hindcasted	climate	energy	state.	Any	hindcasted	temperature	
trend	is	necessarily	accompanied	by	very	large	uncertainties	because	the	model	is	not	known	to	
correctly	characterize	the	underlying	physical	state	of	the	physically	true	climate.	

 
Importantly,	the	identical	criticism	applies	to	the	physical	theory	itself,	as	deployed	within	the	models.	
It	is	neither	known	to	be	complete,	nor	entirely	correct	[Su	et	al.,	2013].	
	
1.2	Regardless	of	any	other	considerations,	evaluation	of	models	by	comparison	of	runs	with	an	
ensemble	mean	is	a	measure	of	precision	only.	
	
1.3	The	accuracy	of	a	model	can	only	be	determined	by	calibration	against	a	known	requisite	physical	
observable	or	standard.	Figure	1	above	shows	that	no	knowledge	of	model	accuracy	is	presently	
available.	Again,	physics	is	about	causality	not	plausibility.	In	this	context,	a	judgment	of	"plausibility"	
then	follows	only	upon	a	subjective	acceptance	of	assumptions.	In	the	absence	of	any	possible	strict	
empirical	test,	therefore,	plausibility	does	not	rise	above	the	level	of	philosophy.	
	
	

2.	Line	66:	The	author	claims	that	“Propagating	physical	errors	through	a	model	is	standard	in	the	physical	
sciences	and	yields	a	measure	of	predictive	reliability.”	However,	the	only	way	you	can	propagate	
physical	errors	through	a	model	is	if	they	are	random;	if	they	are	bias	errors,	then	one	should	correct	
them	and	evaluate	the	model	w/	the	corrected	inputs.	If	they	are	random,	then	you	are	really	talking	
about	uncertainty	propagation	(instead	of	physical	error	propagation).			

	
2.	The	manuscript	analysis	follows	directly	from	the	prescription	for	propagation	of	error	given	in	
[Bevington	and	Robinson,	2003],	which	specifically	includes	empirically	estimated	standard	
deviations.	The	analysis	also	conforms	with	the	recommendations	of	The	Evaluation	of	
Measurement	Data	provided	by	the	International	Bureau	of	Weights	and	Measures	[JCGM,	
100:2008].		

	
	 The	error	propagation	also	follows	[Vasquez	and	Whiting,	2006]	who	note	that,	"When	several	
sources	of	systematic	errors	are	identified,	[uncertainty]	is	suggested	to	be	calculated	as	a	mean	of	
bias	limits	or	additive	correction	factors."	Their	recommended	equation	(2)	is	the	standard	root-
sum-square	uncertainty	as	appears	in	the	manuscript	analysis.	

	
	 The	revised	manuscript	includes	a	new	discussion	of	linear	error	propagation	and	provides	
supporting	citations	(lines	403-419,	599-601,	616-639	and	845-850).	

	
	 The	reported	uncertainty	statistic	in	longwave	cloud	forcing	(LCF)	from	[Lauer	and	Hamilton,	2013]	
followed	from	a	calibration	experiment.	Simulated	cloud	cover	was	evaluated	against	the	observed	
cloud	cover	as	standard.	The	errors	from	twenty-seven	CMIP5	models	were	combined	to	yield	the	
average	1σ	LCF	uncertainty,	±4	Wm-2,	representative	of	those	models.	

	
	 The	manuscript	further	shows	that	LCF	error	is	highly	correlated	among	all	tested	climate	models,	
and	therefore	arises	from	a	systematic	problem	in	the	deployed	theory.	As	do	Bevington	and	
Robinson,	the	[JCGM,	100:2008]	recommends	that	the	uncertainty	from	systematic	error	be	
treated	using	standard	statistics,	under "0.7 Recommendation INC-1" as follows: 
	 "3)	 The	 components	 in	 Category	 B	 should	 be	 characterized	 by	 quantities	uj

2 ,	 which	 may	 be	

considered	as	approximations	to	the	corresponding	variances,	the	existence	of	which	is	assumed.	

The	quantities	uj
2 	may	be	treated	like	variances	and	the	quantities	uj 	like	standard	deviations."	

	
	 "4)	 The	 combined	 uncertainty	 should	 be	 characterized	 by	 the	 numerical	 value	 obtained	 by	
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applying	 the	usual	method	 for	 the	 combination	of	 variances.	 The	 combined	uncertainty	and	 its	
components	should	be	expressed	in	the	form	of	“standard	deviations”."	

	
	 In	 3)	 above,	 "Category	 B"	 components	 represent	 the	 uncertainty	 due	 to	 systematic	 error,	 cf.	
JCGM	Section	3.3	and	especially	3.3.3.	

	
	 Section	4.3	in	the	JCGM	specifies	treatment	of	Category	B	uncertainties	resulting	from	systematic	
error.	 Section	 4.3.1,	 includes	 errors	 revealed	 by	 calibration	 experiments,	 i.e.,	 the	 ±4	Wm-2	 of	
[Lauer	and	Hamilton,	2013].	

	
	 The	combined	standard	uncertainty	for	both	Type	A	and	Type	B	uncertainty	is	specified	in	JCGM	
Section	5.1.2,	equation	10	(author	response	eqn.	1):	

	
	 "The	combined	standard	uncertainty	uc(y)	is	the	positive	square	root	of	the	combined	variance	

uc
2 (y) ,	which	is	given	by	

"uc
2 (y) = ( df

dxi
)2

i=1

N

∑ u2 (xi ) 	 	 	 	 	 	 	 	 1	

	 "where	f	is	the	function	[Y	=	f(X1,	X2,	...,	XN)].	Each	u(xi)	is	a	standard	uncertainty	evaluated	as	
described	in	4.2	(Type	A	evaluation)	or	as	in	4.3	(Type	B	evaluation).	...	Equation	(10)	and	its	
counterpart	for	correlated	input	quantities,	Equation	(13),	both	of	which	are	based	on	a	first-
order	Taylor	series	approximation	of		[Y	=	f(X1,	X2,	...,	XN),	express	what	is	termed	in	this	Guide	the	
law	of	propagation	of	uncertainty	(see	E.3.1	and	E.3.2)."	

 
	 JCGM	equation	10	is	recast	to	represent	the	combined	uncertainty	as	JCGM	11a	(author	response	
eqn.	2):	

uc
2 (y) = ui

2

i=1

N

∑ (y) .	 	 	 	 	 	 	 	 	 2	

	
	 JCGM	eqn.	11a	is	exactly	the	approach	to	propagation	of	uncertainty	taken	in	the	manuscript.	
	
	 Further,	[Vasquez	and	Whiting,	2006]	discuss	propagation	of	errors	through	nonlinear	physical	
models.	Their	approach	is	entirely	analogous	to	that	from	the	JCGM,	outlined	above,	and	the	
manuscript	analysis.		

	
	 [Vasquez	and	Whiting,	2006]	note	that	error	propagation	through	nonlinear	models	is	complicated	
and	"cannot	be	implemented	successfully	from	an	analytical	standpoint."		

	
	 The	present	analysis	avoids	this	problem	by	propagating	error	through	the	linear	model	output,	
rather	than	through	the	model	itself.	This	approach	is	validated	by	the	demonstration	that	the	
nonlinear	climate	models	invariably	produce	air	temperatures	that	are	linear	with	forcing.	

	
	 The	IPCC	itself	admits,	in	box	1.3	of	[Pyle	et	al.,	2016],	that	climate	model	air	temperature	
simulations	are	a	linear	function	of	forcing,	i.e.,	ΔTs	=	λΔF,	where	λ	is	climate	sensitivity.	This	
admission,	in	and	of	itself,	validates	a	linear	propagation	of	error.	

	
3.	Line	87	(equation	1):	The	author	gives	the	equation	for	uncertainty	analysis	used	commonly	in	
experimental	measurements.	However,	there	are	three	very	important	assumptions	involved	in	the	use	
of	this	equation.	First,	the	equation	should	be	linear	over	the	range	of	uncertain	inputs.	Second,	all	of	the	
uncertainties	must	be	random	in	nature	(i.e.,	they	cannot	be	bias	errors).	Third,	the	uncertainty	sources	
for	the	inputs	must	be	uncorrelated.	The	author	makes	an	argument	for	the	first	assumption	(linearity),	
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but	the	second	and	third	assumptions	are	clearly	violated.	The	error	in	the	LWCF	represents	an	unknown	
bias	error.	In	addition,	since	the	different	uncertain	inputs	used	in	this	manuscript	come	from	a	time	
sequence,	they	should	clearly	be	correlated	in	time.	That	is,	if	the	true	error	in	LWCF	in	year	2	is	+4	
W/m2,	it	is	unlikely	that	in	year	3,	the	error	in	LWCF	would	be	-4	W/m2.			
	
3.1	Much	of	reviewer	item	3	is	already	resolved	in	response	item	2.	First,	linearity	in	model	output	is	
demonstrated.		

	
3.2	As	noted	in	item	2,	systematic	uncertainty	is	propagated	in	the	manner	of	random	uncertainty,	

noting	the	approximation	inherent	in	the	empirical	uj .	This	approach	is	also	recommended	for	

propagating	non-random	systematic	error	[Garafolo	and	Daniels,	2014;	Kacker	et	al.,	2007;	Vasquez	
and	Whiting,	2006].	The	approach	is	driven	by	the	necessity	of	making	a	useful	estimate	of	
uncertainty	in	the	real	world	of	physical	measurements,	where	statistical	ideals	are	not	often	met.	
In	this	context,	it	is	noted	again	that	[Lauer	and	Hamilton,	2013]	reported	a	calibration	against	real-
world	measurement	data.		

	
3.3	The	±4	Wm-2	is	a	root-mean-square	uncertainty	statistic	derived	from	combining	the	calibration	
errors	of	twenty	years	of	hindcast	simulations	from	twenty-seven	CMIP5	climate	models,	[Lauer	
and	Hamilton,	2013].	As	such,	this	uncertainty	is	representative	of	all	CMIP5	models.	As	a	multi-
year	averaged	annual	uncertainty,	the	LCF	statistic	is	time-independent.	That	is,	it	is	representative	
of	the	uncertainty	in	any	simulation	year	of	any	current	climate-futures	projection.	Time-series	
correlation	has	no	meaning	for	a	time-independent	"±"	rms	uncertainty	statistic.		

	
	 Revised	Section	2.3	now	begins	with	new	discussion	of	calibration	error	as	applied	to	physical	
models.	Revised	Section	2.4	now	begins	with	an	extended	discussion	of	the	long	wave	cloud	error	
statistic,	its	derivation,	and	its	meaning.		

	
3.4	It	is	not	clear	what	the	reviewer	means	by	"unknown	bias	error."	Model	LWCF	error	arises	from	
theory	bias,	i.e.,	the	deployed	physical	theory	is	not	correct.	Incorrect	physical	theory	produces	an	
incorrect	global	cloud	cover	in	a	simulated	climate	[Dolinar	et	al.,	2015;	Jiang	et	al.,	2012;	Pincus	et	
al.,	2008;	Su	et	al.,	2013].	The	source	of	this	theory	error	within	the	model	is	unknown;	were	it	
known	it	could	be	corrected.	However,	the	magnitude	of	this	error	is	not	unknown,	but	is	known	as	
made	available	by	calibration	against	observables.	

	
	 The	simulated	cloud	cover	includes	regional	positive	and	negative	errors.	It	does	not	produce	a	
global	single-sign	error	offset.	Regional	errors	means	that	air	temperature	(and	thus	convection)	is	
incorrectly	partitioned	in	a	simulation.	Further,	the	radiative	effects	of	clear-sky	and	cloud-covered	
sky	are	incorrectly	allocated	across	the	global	surface.	The	impact	of	this	problem	was	discussed	in	
manuscript	lines	647-664	and	736-763.	

	
3.5	The	review's	comment	about	time-wise	correlation	of	error	misconstrues	the	meaning	of	the	±4	
Wm-2	uncertainty	statistic.	It	does	not	imply	errors	of	annually	alternating	signs,	the	reviewer's	
apparent	perception.	The	statistic	represents	the	annual	average	of	uncertainty	in	the	simulated	
tropospheric	thermal	flux	intensity	in	each	and	every	projection	year.	This	point	was	discussed	in	
manuscript	section	2.4.2,	line	554ff,	again	in	lines	647-664,	and	in	Section	3,	line	729,	and	lines	736-
763.	

	
	 Sections	2.3	and	2.4	of	the	revised	manuscript	now	provide	a	discussion	of	the	meaning	of	this	
statistic.	The	derivational	logic	is	now	presented	in	new	SI	Section	6.2,	along	with	the	dimensional	
analysis.	It	is	hoped	these	resolve	the	reviewer's	concerns.	

	
4.	Pages	5-6:	The	use	of	the	LWCF	in	each	year	as	an	independent,	random,	uncertain	input	appears	to	be	
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flawed.	For	example,	what	happens	if	the	time	sequence	is	broken	down	into	smaller	increments,	say	
months	instead	of	years?	Does	the	uncertainty	get	much	larger?	What	if	it	is	in	increments	of	10	years	
instead	of	1	year.	Does	the	uncertainty	in	the	final	prediction	get	drastically	smaller?	If	the	answer	to	
either	of	these	questions	is	yes	(which	I	believe	it	would	be),	then	this	approach	is	clearly	flawed.	

	
4.	If	the	time	sequence	is	calculated	over	different	time	averages,	then	the	average	change	in	cloud	
cover	scales.	This	is	shown	below	for	20-year	or	monthly	averages.	The	uncertainty	in	air	
temperature	remains	comparable	throughout.	

	
	 [Lauer	and	Hamilton,	2013]	describe	their	calculation	of	the	LCF	error	statistic	as,	“A	measure	of	the	
performance	of	the	CMIP	model	ensemble	in	reproducing	observed	mean	cloud	properties	is	
obtained	by	calculating	the	differences	in	modeled	(xmod)	and	observed	(xobs)	20-yr	means.	These	
differences	are	then	averaged	over	all	N	models	in	the	CMIP3	or	CMIP5	ensemble	to	calculate	the	
multimodel	ensemble	mean	bias	∆mm	which	is	defined	at	each	grid	point	as		

	

Δmm =
1
N

(xi
mod − xobs )

i=1

N

∑ 	 	 	 	 	 	 	 	 (1)"	

	
	 Response	Figure	2	below,	taken	from	Figure	2	of	Lauer	and	Hamilton,	2013,	shows	the	CMIP3	and	
CMIP5	LCF	error	with	the	intensity	bar.	

 
	 Figure	2,	original	Legend:	"Differences	in	20-yr	annual	averages	of	...	LCF	from	the	(left)	CMIP3	and	
[(right)]	CMIP5	multimodel	means	compared	with	...	satellite	observations."	

	
	
	 The	LCF	error	means	show	regional	positive	and	negative	excursions	and	thus	is	not	a	single-sign	
offset	or	bias	error.	Cancellation	of	positive	and	negative	sign	error	by	addition	misrepresents	the	
accuracy	of	the	calculation	and	produces	a	false	precision.	

	

	 The	multi-model	annual	rms	error	is	calculated	as	±σ LCF =
(xi

mod − x obs )2
i=1

26

∑
27

,	where	 xi
mod, x obs 	are	

the	20-year	mean	modeled	and	mean	observed	cloud	forcing,	respectively.	
	
	 The	annual	average	LCF	error,	±4	Wm-2	reveals	a	16	Wm-2	model	annual	average	error	variance.	If	
recalculated	as	a	10-year	block-average,	rather	than	an	annual	average	then,	in	equation	(1)	above,	
N	=	2	rather	than	20.	In	this	case,	the	rms	error	requires	a	per-model	mean	error	from	a	10-times	
larger	root.	That	is,	it	requires	using	the	mean	model	error	in	Wm⁻²	summed	across	10-year	units.	
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The	10-year	average	variance	is	then	160	Wm-2,	yielding	a	10-year		LCF	uncertainty	σ	=±12.6	Wm-

2(10y)-1.	
	
	 Manuscript	uncertainty	equations	7,8	yield	the	uncertainty	across	a	10-year	step	as	(33K	×	0.42	×	
12.6	Wm-2)/33.321	Wm-2	=	±5.24	K,	where	33.321	Wm-2	is	the	GHG	forcing	for	the	year	2000.	After	
10	such	steps,	the	uncertainty	in	a	centennial	projection	year	2100	is	 10× (5.24)2 =	±16.6	K,	i.e.,	
an	uncertainty	entirely	comparable	to	the	manuscript	value	calculated	in	annual	time-steps.	

	
	 Likewise,	for	a	monthly	average	LCF	uncertainty	N	=	240	rather	than	20,	and	yielding	monthly	LCF	
rmse	=	±1.2	Wm-2.	The	centennial	uncertainty	in	air	temperature	across	1200	monthly	time	steps	is	
±17.3	K,	again	entirely	comparable.	

	
5.	Regarding	Figure	5	and	the	corresponding	discussion	around	lines	432-435,	the	author	makes	the	
argument	that	since	the	TCF	versus	latitude	curves	all	have	similar	shapes,	that	the	different	models	“do	
not	display	random-like	dispersions	around	the	zero-error	line.”	However,	while	there	may	be	systematic	
error	in	TCF	versus	latitude,	but	the	actual	mean	over	the	earth’s	area	(which	I	believe	would	be	much	
more	relevant	here)	would	be	much	less	and	may	display	a	more	random	behavior.			

	
5.	Response	Figure	2	above	shows	the	CMIP5	20-year,	27	model,	multimodel	mean	error	in	LCF,	
representing	an	average	across	a	total	of	540	simulation	years	and	a	23×	reduction	in	random	error.	
The	remaining	errors	must	be	systematic.	

	
	 As	noted	in	item	4	above,	cancellation	by	addition	of	regional-scale	positive	and	negative	errors	
hides	the	uncertainty	and	produces	a	false	precision.	

	
6.	Lines	511-512:	The	author	states	“CMIP5	models	were	found	to	produce	an	annual	average	LWCF	root-
mean-squared	error	(rmse)	=	±4	Wm-2.”	The	main	point	of	this	manuscript	seems	to	revolve	around	this	
uncertainty	magnitude.	However,	I	suspect	that	it	is	possible	that	this	large	uncertainty	arises	from	the	
fact	that	each	one	of	the	CMIP5	models	is	highly	calibrated	based	on	historical	data.	In	some	cases,	the	
LWCF	values	may	have	been	calibrated	to	better	match	the	data.	However,	since	it	is	accepted	that	the	
climate	models	are	not	perfect	(i.e.,	that	they	contain	significant	model	form	uncertainty),	then	it	is	
possible	that	the	LWCF	values,	when	examined	across	a	suite	of	different	models,	may	exhibit	variations	
that	are	not	consistent	with	the	actual	uncertainty	in	LWCF	values.	Stated	differently,	the	uncertainties	
in	LWCF	are	likely	over-estimated	due	to	the	calibration	of	models	with	acknowledged	model	form	errors.	

	
6.	The	reviewer's	reasoning	is	difficult	to	understand.	If	models	are	tuned	to	match	known	LWCF,	this	
greater	matching	reduces	LWCF	calibration	errors.	Then	how	can	it	be	that	LWCF	errors	are	over-
estimated?		

	
	 That	is,	tuning	to	reproduce	known	LWCF	should	diminish	the	differences	with	observed	LCWF.	
Model	LWCF	errors	should	then	be	under-estimated	in	a	calibration	experiment,	not	over-
estimated.	

	
	 [IPCC,	2013]	describes	model	tuning	in	box	9.1,	Chapter	9.	Typically,	selected	suites	of	parameters	
are	adjusted	so	as	to	reproduce	the	radiative	balance	at	the	top	of	the	atmosphere.	Evidently,	
different	groups	tune	different	combinations	of	parameters	to	attain	this	balance,	but	do	not	fully	
report	their	choices.	The	CMIP5	experimental	design	can	be	consulted	in	[Taylor	et	al.,	2012].	

	
	 The	LWCF	uncertainty	derived	in	[Lauer	and	Hamilton,	2013]	represents	27	CMIP5	models.	These	
models	were	tuned	to	climate	observables	and	are	representative	of	the	models	that	are	used	to	
project	climate.	Their	LWCF	error	is	thus	appropriate	to	a	representative	propagation	of	
uncertainty.	
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7.	In	order	to	understand	the	author’s	proposed	emulation	model	(equation	6,	the	Passive	Warming	Model,	
or	PWM)	better,	I	programmed	up	the	model	and	applied	it	to	predictions	of	year	2000	through	2100.	
Without	knowing	how	the	incremental	change	in	greenhouse	gas	forcing	(ΔF)	values	varied,	I	simply	
assumed	a	constant	value.	This	value	was	chosen	in	order	to	match	reasonably	well	to	Figure	7	from	the	
manuscript.	The	results	for	mean	temperature	anomaly	are	shown	below	(left)	along	with	Figure	7	
reproduced	from	the	manuscript	(right).	In	order	to	match	the	final	temperature	anomaly	reasonably	
well,	I	had	to	assume	an	incremental	change	in	greenhouse	gas	forcing	ΔF	of	0.07	W/m2.	However,	the	
quoted	uncertainty	in	this	value	is	4	W/m2,	which	represents	one	standard	deviation.	It	seems	quite	
implausible	to	me	that	the	average	change	in	greenhouse	gas	forcing	from	year	to	year	is	0.07	W/m2,	
while	the	uncertainty	in	this	number	is	4	W/m2.	Something	is	not	right	here.	Again,	I	suspect	this	
uncertainty	is	much	too	large,	as	mentioned	in	item	#7	above.	

	
	Reviewer’s	Simulation	for	Mean	Global	Temperature	Anomaly	Fig.	7	(from	manuscript)	
	

7.	The	reviewer	apparently	chose	to	model	the	SRES	A2	scenario.	For	SRES	A2,	the	2000-2099	average	
annual	change	in	forcing	is	0.067	Wm-2,	so	the	reviewer's	estimate	is	good.	

	
	 However,	the	uncertainty	in	this	value	is	not	the	reviewer's	4	Wm-2,	or	rather	±4	Wm-2.	The	±4	Wm-

2	is	an	uncertainty	in	the	tropospheric	thermal	energy	flux,	consequent	to	model	error.	It	is	not	an	
error	in	GHG	forcing	or	in	SRES	scenario	forcing.	The	A2	forcing	uncertainty	is	zero,	because	the	
SRES	forcings	are	assigned.		

	
	 Rather,	the	±4	Wm-2	is	the	uncertainty	in	the	simulated	tropospheric	thermal	energy	flux	arising	
from	model	LWCF	error.	GHG	forcing	becomes	a	part	of	the	tropospheric	thermal	energy	flux.	

	
	 A	large	uncertainty	in	the	simulated	flux	itself	strongly	conditions	an	ability	to	resolve	the	impact	of	
the	small	perturbation	to	simulated	tropospheric	flux	represented	by	GHG	forcing.	

	
	 This	point	is	made	clear	throughout	the	manuscript.	The	concept	of	LWCF	error	as	a	tropospheric	
thermal	energy	flux	error	was	introduced	in	manuscript	Section	2.4.1	"The	magnitude	of	CMIP5	TCF	
global	average	atmospheric	thermal	energy	flux	error."		

	
	 Line	501	immediately	under	the	heading	states,	"CMIP5	TCF	error	entrains	an	error	in	simulations	of	
tropospheric	thermal	energy	flux."	Line	510	points	out	that,	"LWCF	represents	the	contribution	
made	by	clouds	to	the	thermal	radiation	bath	of	the	atmosphere."	

	
	 Line	518-523	again	made	this	point,	and	concluded,	"simulations	of	the	climatic	response	to	
changes	in	GHG	atmospheric	forcing	are	limited	by	±4	Wm-2	of	uncertainty	in	the	magnitude	of	
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thermal	energy	flux	within	the	troposphere."	
	
	 That	is,	the	impact	of	the	SRES	A2	0.07	Wm-2	annual	increase	in	GHG	forcing	must	be	resolved	
against	an	annual	uncertainty	of	magnitude	±4	Wm-2	in	the	simulated	thermal	energy	flux	of	which	
GHG	forcing	becomes	a	part.	

	
	 This	is	the	meaning	of	manuscript	line	533,	"In	eqn.	7,	F0+ΔFi	represents	the	tropospheric	GHG	
forcing,	which	is	now	conditioned	by	the	uncertainty	in	simulated	tropospheric	thermal	energy	flux	
due	to	LWCF	error."	

	
	 Further	explanations	of	the	significance	of	LCF	error	with	respect	to	projection	uncertainty	are	
found	in	lines	542-552,	557-562,	and	792-809.	

	
8.	As	mentioned	before,	the	author	assumed	that	uncertainties	in	thermal	flux	(due	to	LWCF	error)	from	
year	to	year	are	independent,	random	variables.	In	order	to	test	the	effects	of	this	assumption,	I	ran	
Monte-Carlo	simulations	(using	100,000	samples)	using	my	rough	approximation	of	the	author’s	PWM.	
When	assuming	that	the	input	uncertainties	were	independent,	I	found	that	the	final	temperature	
anomaly	at	year	2100	had	a	mean	of	2.76	K	and	a	standard	deviation	of	16.7	K,	which	is	consistent	with	
the	result	given	in	the	manuscript.	I	then	re-ran	the	simulations	assuming	that	the	uncertainties	were	
perfectly	correlated	from	year	to	year	(i.e.,	using	the	same	uncertainty	sample	each	year).	The	result	
was	that	the	year	2100	temperature	anomaly	had	a	mean	of	2.78	K	and	a	much	larger	standard	
deviation	of	166	K.	Histograms	of	these	two	simulations	are	shown	below:	uncorrelated	(left)	and	
perfectly	correlated	(right).	While	the	true	result	is	likely	somewhere	in	between,	it	strains	credibility	to	
believe	that	the	actual	one	standard	deviation	uncertainty	in	global	temperature	anomaly	could	be	on	
the	order	of	±100	K	and	that	the	two	standard	deviation	uncertainty	(~95%	probability)	could	be	in	the	
range	±200	K.	

Independent,	Random	Uncertainties		 	 Perfectly	Correlated	Random	Uncertainties	
	

Year	2100	Temperature	Anomaly	Histograms	
	

8.1	The	reviewer	is	mistaken	in	the	first	sentence	of	item	8.	Referencing	the	statistic	as	a	"variable,"	
as	the	reviewer	does,	implies	the	statistic	is	a	physical	quantity,	which	it	is	not.	That	is,	representing	
an	error	statistic	to	be	a	variable	entrains	a	very	basic	category	mistake.	It	supposes	a	statistic	is	a	
physical	magnitude.	

	
	 The	LWCF	error	statistic	was	not	assumed	to	be	an	independent	random	variable.	Rather,	it	is	
accepted	as	[Lauer	and	Hamilton,	2013]	provided	it,	namely	as	a	model	calibration	uncertainty.		

	
	 The	LWCF	calibration	error	is	an	annualized	average	uncertainty	statistic	representative	of	CMIP5	
climate	models.	It	therefore	and	necessarily	conditions	each	and	every	simulation	year	of	a	climate	
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projection	made	using	such	models.	
	
8.2	If	a	model	LWCF	error	is	time-wise	autocorrelated,	then	a	corrected	20-year	mean	error	might	be	
calculated	using	an	effective	time	(NY)'=	20×[(1-r)/(1+r)],	where	"r"	is	the	autocorrelation	
coefficient.		

	
	 [Lauer	and	Hamilton,	2013]	do	not	mention	whether	the	tested	model	LWCF	errors	were	time-wise	
autocorrelated.	They	only	mention	the	correlation	of	simulated	and	observed	LWCF,	ranging	from	
0.70-0.92	for	the	tested	CMIP5	models.		

	
8.3	The	reviewer's	comment	that	"it	strains	credibility"	amounts	to	an	argument	from	personal	
incredulity,	which	has	no	strength	in	a	scientific	context.	The	meanings	of	2σ	uncertainties	of	±33.4	
K	or	±200	K	are	identical,	namely	that	the	projection	transmits	no	physical	information	about	the	
future	climate	state.	

	
	 According	to	[Stephens	et	al.,	2012],	the	measurement	uncertainty	in	the	terrestrial	surface	energy	
budget	is	±17	Wm-2.	Thermal	radiation	from	the	warm	surface	is	by	far	the	greatest	contributor	to	
the	tropospheric	thermal	energy	flux	[Costa	and	Shine,	2012;	Stephens	et	al.,	2012;	Whitlock	et	al.,	
1995].	Thus,	a	fuller	account	of	the	tropospheric	thermal	flux	uncertainty	would	include	the	
contribution	the	uncertainty	in	the	surface	flux	budget	makes	to	the	total	uncertainty	in	the	
tropospheric	energy	flux	budget.		

	
	 [Costa	and	Shine,	2012]	point	out	that	only	a	tenth	of	the	surface	flux	intensity	emerges	as	
outgoing	LW	radiation	at	the	TOA.	The	rest	of	it	(0.9)	enters	the	troposphere	before	finally	
emerging	at	the	TOA	as	part	of	the	outgoing	LW	emission.		

	
	 Known	tropospheric	thermal	energy	flux	is	a	target	of	climate	model	simulations.	Uncertainty	in	the	
target	value	imposes	its	uncertainty	onto	a	simulated	value.	In	that	case,	should	not	something	like	
0.9×±17	Wm-2	=	±15	Wm-2	be	included	in	a	fuller	account	of	the	uncertainty	attached	to	simulated	
tropospheric	thermal	energy	flux?		

	
	 A	tropospheric	flux	uncertainty	of	±4Wm-2	and	±15	Wm-2	combined	in	quadrature	is	±15.5	Wm-2.	
Inclusion	of	this	one	additional	source	of	uncertainty	in	simulated	tropospheric	thermal	flux,	alone,	
propagates	across	100	years	to	a	centennial	2σ	uncertainty	in	projected	air	temperature	of	±129	K;	
a	value	comparable	to	that	which	strained	the	reviewer's	credibility.	However,	this	addition	does	
not	tell	us	anything	more	than	did	the	propagation	of	±4	Wm-2.	Each	of	them	says	the	same	thing,	
which	is	that	no	physical	information	about	the	future	climate	state	is	available	in	the	model	
projection.	

	
	 A	relatively	comprehensive	evaluation	of	climate	model	error	was	made	some	time	ago,	indicating	
combined	errors	of	order	100	Wm-2	[Soon	et	al.,	2001].	Although	a	similar	study	has	not	been	
carried	out	on	CMIP3	or	CMIP5	models,	much	of	the	accounting	remains	relevant.	That	level	of	
error	indicates	nearly	a	third	of	incoming	solar	energy	is	incorrectly	partitioned	among	the	climate	
sub-states.	One	can	only	imagine	the	magnitude	of	uncertainty	in	a	projected	climate,	after	100	
years	of	100	Wm-2	uncertainty	is	propagated	through	a	climate	model	simulation.	
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