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Patrick	Frank	
Earth	and	Space	Science	Manuscript	2017EA000256	
Response	to	Review	#6	
	
Summary	response:	

1. [John	and	Soden,	2007]	does	not	physically	validate	simulation	anomalies;	item	1.1.	
2. Differencing	from	a	base	state	does	not	subtract	away	simulation	errors;	items	1.2	and	

1.3.	
3. [Dessler,	2013]	does	not	validate	model	simulations	against	observations;	item	1.4.	
4. Simulation	anomalies	have	unrecognized	uncertainty;	item	1.5.	
5. The	reviewer	has	misconstrued	statistical	uncertainties	to	be	physical	magnitudes;	item	

2.2.1.	
6. The	reviewer	has	confused	model	precision	with	model	accuracy;	items	1.1,	3.2	and	

3.3.1.	
7. The	reviewer	has	inadvertently	validated	the	manuscript	error	propagation;	item	3.3.1.	
8. The	reviewer	has	misperceived	manuscript	eqn.	6	as	representing	climate	physics;	item	

4.1.	
9. The	reviewer	has	misunderstood	the	origin	of	the	0.42	sensitivity	fraction	and	of	eqn.	6;	

items	4.2,	4.3	and	4.4.	
	
The	reviewer	is	quoted	in	italics,	and	the	indented	author	response	follows.	
	
1.	The	paper	makes	an	elementary	but	fundamental	error:	it	confuses	errors	in	the	models'	base	
state	with	errors	in	the	models'	predictions	of	how	the	climate	will	change.	The	fact	that	
models	can	have	large	biases	in	their	base	state	is	well	documented;	e.g.,	previously	published	
work	has	shown	biases	in	their	water	vapor	and	temperature	fields	(e.g.,	John	and	Soden	
(2007),	Temperature	and	humidity	biases	in	global	climate	models	and	their	impact	on	climate	
feedbacks,	Geophys.	Res.	Lett.,	34,	L18704,	doi:	10.1029/2007GL030429),	and	I	have	no	doubt	
that	some	GCMs	have	large	biases	in	their	cloud	fields	(as	this	paper	argues).	

	
	 However,	this	does	not	mean	that	the	*change*	in	these	fields	as	the	climate	warms	in	the	
models	is	wrong.	John	and	Soden	showed	that,	despite	the	biases	in	the	water	vapor	fields,	the	
**change**	in	water	vapor	in	response	to	warming	is	nearly	identical	among	the	GCMs,	
meaning	that	the	water	vapor	feedback	is	nearly	identical.	Comparisons	of	the	cloud	feedbacks	
in	the	GCMs	shows	good	agreement	among	the	GCMs,	and	with	observations	(e.g.,	Dessler,	A.	
E.	(2013),	Observations	of	climate	feedbacks	over	2000-10	and	comparisons	to	climate	models,	
J.	Climate,	26,	333-342,	doi:	10.1175/jcli-d-11-00640.1).	This	means	that,	despite	large	
differences	in	the	cloud	fields,	the	change	in	clouds	as	the	climate	warms	is	basically	the	same.	

	
1.	To	summarize:	the	reviewer	makes	two	arguments	here.	The	first	is	that	errors	in	states	
("base	states")	do	not	translate	into	uncertainties	in	anomalies.	Second,	that	agreement	
among	models	is	a	demonstration	of	accuracy.	These	ideas	are	taken	in	turn.	

	
	 Response	item	1,	below,	shows	that	[Covey	et	al.,	2003;	John	and	Soden,	2007]	do	not	
validate	simulated	climate	change,	that	model	error	is	not	known	to	be	constant,	that	
climate	models	are	not	known	to	follow	linear	response	theory,	that	[Dessler,	2013]	does	
not	does	not	convey	observational	verification	of	climate	models,	and	that	uncertainty,	
when	present,	only	increases	when	taking	anomalies.	
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These	points	are	taken	up	in	sequence	below,	in	numbered	subsections.	
	
1.1	[John	and	Soden,	2007]	does	not	validate	that	the	change	in	climate	fields	is	accurately	
modeled.		

	
	 It	is	first	is	noted	that	the	reviewer	presents	inter-model	biases	as	though	they	are	
physical	errors.	They	are	not.	Physical	errors	are	obtained	relative	to	observations.	They	
are	a	measure	of	accuracy.	Inter-model	biases	represent	precision.	This	distinction	was	
emphasized	in	the	Introduction,	but	the	reviewer	has	evidently	not	encompassed	it.	

	
	 The	CMIP3	models	in	[John	and	Soden,	2007]	are	listed	below	with	error	in	Total	Cloud	
Amount	(CA)	and	TOA	Longwave	Cloud	Forcing	(LWCF).	Table	R1	shows	these	CMIP3	
errors	as	read	off	the	corresponding	Taylor	diagrams	in	Figure	3	of	[Lauer	and	Hamilton,	
2013].	

	
Table	R1:	Selected	Errors	for	the	CMIP3	Models	in	[John	and	Soden,	2007].	

Models	 RMS	Error	Total	CA	(%);	
(Correlation)	

RMS	Error	TOA	LWCF	(Wm-2);	
(Correlation)	

BCCR_CM2_0	 0.9±1.2;	(0.65)	 ---	
CNRM_CM3	 0.75±0.8;	(0.70)	 0.75±1.3;	(0.82)	
CSIRO_MK3_0	 1.1±0.95;	(0.71)	 0.8±1.5;	(0.82)	
GFDL_CM2_0	 1.1±1.2;	(0.55)	 0.49±1.1;	(0.9)	
GFDL_CM2_1	 1.1±1.2;	(0.52)	 0.5±0.9;	(0.9)	
GISS_MODEL_E_H	 1.2±1.2;	(0.45)	 0.8±0.9;	(0.66)	
GISS_MODEL_E_R	 1.2±1.2;	(0.49)	 0.6±0.95;	(0.78)	
IAP_FGOALS1_0_G	 1.25±0.9;	(0.11)	 0.6±1.1;	(0.84)	
INMCM3_0	 0.8±0.95;	(0.61)	 0.8±1.3;	(0.79)	
MIROC3_2_MEDRES	 0.7±1.3;	(0.85)	 0.55±1.2;	(0.9)	
MPI_ECHAM5	 0.9±1.1;	(0.63)	 0.52±1.2;	(0.9)	
MRI_CGCM2_3_2A	 0.8±1.2;	(0.73)	 0.5±1;	(0.9)	
NCAR_CCSM3_0	 0.75±0.8;	(0.70)	 0.6±1.3;	(0.88)	
NCAR_PCM1	 1.25±1.2;	(0.33)	 0.8±1.25;	(0.79)	
UKMO_HADCM3	 0.8±1;	(0.61)	 0.5±1;	(0.88)	
UKMO_HADGEM1	 0.7±1.2;	(0.82)	 0.6±1.1;	(0.84)	
Observations	 0±1;	(1.00)	 0±1;	(1.00)	

	 CA	is	total	cloud	amount,	LWCF	is	longwave	cloud	forcing.	Correlations	are	between	modeled	and	observed	spatial	
distributions.	

	
	 The	correlation	of	simulated	with	observed	percent	CA	ranges	from	0.11	to	0.85.	In	
HADCM3,	for	example,	CA	is	a	reasonable	0.8±1,	but	the	correlation	with	observed	CA	is	
0.61.	Thus,	even	though	the	amount	and	variation	of	HADCM3	CA	is	good,	the	cloud	
distribution	is	poor.	Similar	concerns	accrue	to	LWCF.	Thus,	the	simulated	tropospheric	
energy	flux	distributions	are	not	physically	correct	and	vary	from	model	to	model.	

	
	 These	errors	indicate	the	CMIP3	models	produce	climate	states	different	from	the	correct	
terrestrial	state.	Additionally	however,	they	also	do	not	produce	climates	states	similar	
even	among	themselves.	None	of	the	modeled	climate	states	include	physically	correct	
atmospheric	energy	flux	distributions.	

	
	 Figure	R1	shows	Figure	2	of	[John	and	Soden,	2007],	with	author	additions.		



 3 

	
	 Figure	R1,	original	Figure	2	legend:	"(top)	Response	of	T	at	three	different	atmospheric	levels	(850,	
500,	and	200	hPa)	to	change	in	surface	temperature	(Ts).	(bottom)	Fractional	response	of	q	at	three	
different	atmospheric	levels	(850,	500,	and	200	hPa)	to	change	in	T	at	those	levels.	Different	
symbols	represent	different	coupled	GCMs	used	in	this	study.	Tropical	means	are	used.	∂T,	∂Ts,	and	
∂q/q	are	the	difference	between	the	first	10	year	and	the	last	10	year	means	of	20th	century	of	each	
variable."		

	
	
	 The	data	in	Figure	R1	(Figure	2	of	[John	and	Soden,	2007])	display	simulated	anomalies.	
The	fitted	black	lines	in	the	original	Figure	illustrate	correlation	among	models,	not	
correspondence	with	physical	observables.		That	is,	original	Figure	2	is	again	about	model	
precision,	not	model	physical	accuracy.	

	
	 In	Figure	R1	top,	the	colored	vertical	lines	are	the	20th	century	∂Ts	ten-year	means	of	the	
GISS	(red,	2007/01/08	version)	and	CRU	(blue;	May	2005	version)	surface	temperature	
records.	The	physically	correct	values	of	the	ordinate	∂T(K)	for	850,	500	and	200	hPa	
presumably	lay	somewhere	on	these	lines.		

	
	 The	three	horizontal	intercepts	through	these	lines	then	represent	the	best-estimate	
model	∂T(K)	values.	These	are	(pressure	level,	best	∂T(K),	(model	∂T(K)	range)):	200	hPa,	
1.3,	(0.7-1.7);	500	hPa,	1,	(0.6-1.3);	800	hPa,	0.75,	(0.45-1.0).	

	
	 The	simulation	anomalies	distant	from	these	intercepts	are	clearly	incorrect.	Greater	
distance	represents	greater	physical	error.	However,	the	physically	correct	values	need	
not	lie	on	the	fitted	lines,	but	may	be	vertically	displaced.	Therefore,	even	the	best-
estimate	points	are	not	known	to	be	physically	correct.		

	
	 This	analysis	clearly	shows	that	the	mere	fact	the	inter-model	simulation	anomalies	are	
correlated	does	not	mean	their	physical	error	subtracts	away.	None	of	the	simulation	
anomaly	lines	or	points	in	Figure	R1	is	known	to	be	correct.	

	
	 Further,	calibration	experiments	have	shown	that	Ts	is	contaminated	with	non-normal	
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systematic	sensor	measurement	error	[Brooks,	1926;	Hubbard	and	Lin,	2002;	Huwald	et	al.,	
2009;	Lin	et	al.,	2005;	Saur,	1963].	Non-normal	error	does	not	average	away,	and	is	
responsible	for	a	lower	limit	uncertainty	of	±0.5	K	in	Ts,	which	has	been	generally	ignored	
[Patrick	Frank,	2010;	2011;	2015].	Uncertainty	combines	in	quadrature	when	taking	
anomalies	[Bevington	and	Robinson,	2003].	Therefore	a	mean	of	the	vertical	CRU	and	GISS	
anomaly	∂Ts	lines	includes	a	horizontal	±0.7	K	uncertainty.		

	
	 This	level	of	uncertainty	causes	the	GISS	and	CRU	anomalies	uncertainty	ranges	to	overlap	
at	the	1 σ	level,	and	the	horizontal	uncertainty	bars	extend	right	across	the	entire	width	of	
Figure	R1	top.	This	wide	uncertainty	in	∂Ts	makes	it	impossible	to	discover	the	physically	
correct	value	of	∂T	at	any	hPa.	It	is	therefore	impossible	to	know	which	simulation	value	is	
the	more	correct,	or	indeed	whether	any	of	them	are	correct.	Thus,	the	uncertainty	in	
target	magnitude	necessarily	imposes	wide	confidence	intervals	about	the	simulation.	
None	of	Figure	R1	has	any	clear	physical	meaning.	

	
	 In	Figure	R1,	bottom,	the	green	points	plot	the	mean	best	model	∂T(K)	intercept	values	on	
the	fitted	∂q/q	lines.	The	horizontal	intercepts	are	again	the	best-estimate	model	∂q/q	
values.	These	are	(pressure	level,	mean	%,	(model	range)):	200	hPa,	0.18,	(0.075-0.27);	500	hPa,	
0.09,	(0.05-0.17),	and;	850	hPa,	0.045,	(0.03-0.06).		

	
	 Once	again,	the	simulation	anomalies	more	distant	from	these	points	represent	greater	
apparent	physical	error.	Once	again,	however,	even	the	best-estimate	points	are	not	
known	to	be	physically	correct.		

	
	 Once	again,	the	fact	that	the	inter-model	simulation	anomalies	are	correlated	clearly	does	
not	mean	their	physical	error	subtracts	away.	Indeed,	the	physical	uncertainties	are	so	
large	that	error	is	impossible	to	evaluate.	How	can	errors	be	said	to	subtract	away,	when	
the	errors	themselves	are	unknowable?	

	
	 Additionally,	[John	and	Soden,	2007]	Figure	2	illustrates	the	conclusion	following	from	
Table	R1.	The	different	CMIP3	models	simulate	disparate	temperature	and	heat	flux	
changes	despite	the	identical	20th	century	forcings.		

	
	 All	of	the	simulated	anomalies	in	[John	and	Soden,	2007]	Figure	2	include	large	physical	
uncertainties,	but	the	true	magnitudes	of	the	errors	remain	unknown	because	the	
physically	true	magnitudes	are	not	known.	

	
	 These	are	all	tuned	models.	They	deploy	alternative	suites	of	parameters.	Each	parameter	
has	a	significant	range	of	uncertainty.	Disparate	sets	of	parameter	magnitudes	are	used	
among	the	different	models.	These	parameter	sets	encode	disparate	physical	
relationships	among	the	respective	climate	variables.	The	linear	fits	merely	show	the	
effects	of	parameter	tuning,	namely	correlated	model	expectation	values.	

	
	 The	disparate	physical	relationships	of	the	variables	deployed	within	the	models	
necessitate	that	none	of	the	model	expectation	values	represent	unique	solutions	to	the	
problem	of	the	climate	energy-state.	Nevertheless,	[John	and	Soden,	2007]	Figure	2	
included	no	uncertainty	bars.	
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	 In	short,	[John	and	Soden,	2007]	illustrates	exactly	the	problem	addressed	by	the	present	
study.	This	is	the	problem	of	physical	accuracy	versus	model	precision.	[John	and	Soden,	
2007]	is	about	model	precision.	It	establishes	nothing	about	physical	accuracy.	Model	
tuning	hides	the	simulation	uncertainties.	Physical	error	is	ignored,	and	is	not	propagated	
through	the	simulations.	The	results	in	[John	and	Soden,	2007]	are	misleading	because	
they	reveal	only	model	precision	while	taken	to	imply	model	accuracy,	and	they	
completely	lack	valid	physical	uncertainty	estimates.	

	
	
1.2	Simulation	errors	do	not	subtract	away.		
	
	 Taken	up	here	is	the	reviewer's	suggestion	that	changes	in	climate	fields	are	correct,	even	
when	the	fields	themselves	are	wrong.	Also	implied	is	that	climate	models	cohere	with	
linear	response	theory.	This	further	implication	is	taken	up	in	1.3	below.	

	
	 The	problem	of	constant	model	error	was	thoroughly	addressed	in	manuscript	Section	
2.4.3,	lines	639-676,	with	reference	to	an	even	more	detailed	discussion	in	SI	Section	7.	
However,	the	reviewer	apparently	did	not	consult	this	material.	

	
	 The	reviewer	proposes	error-free	anomalies,	and	has	not	limited	this	freedom	from	error	
to	only	those	anomalies	calculated	from	adjoining	step-wise	realizations.	That	is,	the	
reviewer	asserts	anomalies	taken	across	distant	points	such	as,	e.g.,	the	twentieth	century	
anomalies	of	[John	and	Soden,	2007],	are	also	correct.	This	reviewer-imposed	condition	
requires	simulation	errors	of	constant	magnitude.	

	
	 Suppose	a	climate	projection,	starting	from	a	zeroth	climate	state,	projects	a	series	of	
successive	climate	states.	These	states	will	have	air	temperatures	with	physically	true	
magnitudes,	T0,	T1,	T2,	...,	Tn.		

	
	 The	projected	temperatures	are	T0+ε0,	T1+ε1,	T2+ε2,	...,	Tn+εn,	where	ε 	is	the	error	in	the	
simulated	temperature.	The	zeroth	state	is	a	simulated	state,	and	thus	does	have	an	
associated	error.	

	
	 According	to	the	reviewer,	the	anomaly	ΔT1,0	=	(T1+ε1)	-	(T0+ε0)	=	(T1-T0)	+	(ε1-ε0),	and	ε1-ε0	
=	0.	The	reviewer's	condition	requires	this	be	also	true	for	an	anomaly	of	any	span,	e.g.,	
ΔTm,i	=	(Tm+εm)	-	(Ti+ε i)	=	(Tm-Ti)	+	(εm-εi)	and	εm-εi	=	0	for	any	distant	pair	of	time-indexed	
magnitudes.		

	
	 That	is,	the	reviewer's	condition	requires	that	the	errors	are	constant	offsets,	such	that	ε0	
=	ε1	=	ε2	=	...	=	εn,	and	every	εm	-	εi	=	0	for	any	m,	i	pair.	

	
	 However	the	magnitude	of	global	average	T	is	time-wise	variable.	The	constancy	of	ε	
requirement	imposes	that	the	magnitude	of	ε	is	negatively	correlated	with	the	magnitude	
of	T,	and	precisely	so,	in	order	that	ε	remain	constant	and	Δε	=	0.	

	
	 The	reviewer's	requirement	of	error-free	anomalies	is	generalizable	to	every	state	variable,	
S0,	S1,	S2,	...	Sn,	of	projection	magnitudes	S0+ε0,	S1+ε1,	S2+ε2,	...,	Sn+εn.	All	the	projection	
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errors	must	be	exactly	anti-correlated	with	their	corresponding	state	magnitudes.	
	
	 A	further	reviewer-imposed	condition	is	that	a	projection	year	initializing	with	a	projection	
state	magnitude	Si+εi	is	able	to	produce	an	error-free	ΔSj,j.	The	error	in	state	Si	cannot	
impact	the	evolution	to	state	Sj	because	εi	=	εj.		

	
	 More	generally,	given	the	initial	state	S0	with	error	ε0,	the	ε0	does	not	impact	the	evolution	
of	the	state.	The	ΔSj,j	change	is	simulated	accurately,	despite	the	error	of	magnitude	εi	
entering	into	the	calculation.	

	
	 Model	evolution	with	constant	error	means	every	ΔS	in	the	evolving	projection	is	exactly	
physically	correct,	despite	that	each	Si+1	state	initializes	from	a	physically	incorrect	Si	state.	

	
	 Perfect	negative	correlation	between	state	magnitudes	and	their	simulation	errors	with	
invariably	correct	anomalies	requires	that	a	model	exactly	compensate	state	error	in	every	
projection	step.	

	
	 This	condition	has	never	been	demonstrated,	neither	generally	nor	in	any	specific	cases.	It	
is	not	demonstrated	in	[John	and	Soden,	2007].	The	reviewer's	position	is	an	article	of	
faith	rather	than	of	science.	

	
	
1.3	Climate	models	are	not	known	to	follow	linear	response	theory.	
	
	 The	implied	relevance	of	linear	response	theory	to	climate	model	expectation	values	was	
fully	discussed	in	SI	Section	7.1.1,	"The	problem	of	validating	a	model	difference."	There	it	
is	shown	that	the	relevance	is	chimerical	at	best,	and	more	recent	assessments	have	not	
improved	this	diagnosis	[Hassanzadeh	and	Kuang,	2016].	The	Supporting	Information	has	
been	updated	with	this	reference.	

	
	 The	condition	imposing	a	linear	response	to	a	non-linear	theory	requires	very	weak	
perturbations.	According	to	the	reviewer,	application	of	the	condition	of	linearity	to	the	
anomalies	of	[John	and	Soden,	2007]	requires	that	the	entire	forcing	change	between	
1850	and	2010	be	assigned	to	the	category	"very	weak."	This,	too,	has	not	been	shown.	

	
	
1.4	[Dessler,	2013]	does	not	observationally	verify	climate	models.	
	
		 [Dessler,	2013]	treats	the	ECMWF	and	MERRA	reanalysis	products	as	observations.	They	
are	not.	There	are	published	warnings	against	equating	reanalysis	to	observations	[Dee	et	
al.,	2011;	Kalnay	et	al.,	1996].	Dee,	et	al.,	2007	for	example:	"Many	users	regard	reanalysis	
products	as	equivalent	to	observations,	even	if	this	is	not	always	justifiable.	"		

	 	
	 [Kalnay	et	al.,	1996]	warn	that,	"[Some	reanalysis	fields]	are	partially	defined	by	the	
observations	but	are	also	strongly	influenced	by	the	model	characteristics.	For	example,	
the	amount	of	moisture	that	the	tropical	model	atmosphere	can	hold	depends	on	its	
parameterization	of	cumulus	convection,	since	some	convection	schemes	tend	to	dry	out	
the	atmosphere	more	than	others.	Therefore,	even	if	the	analysis	incorporates	rawinsonde	
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and	satellite	moisture	data,	the	overall	humidity	will	be	influenced	by	the	climatology	of	
the	model.	This	is	even	more	true	for	quantities	that	are	not	directly	observed	or	whose	
observations	are	not	currently	assimilated	into	the	present	analysis	systems."	

	
	 That	is,	reanalysis	fields	used	as	model	validation	standards	can	reflect	the	biases	in	the	
originating	climate	model.	A	model-derived	reanalysis	product	can	falsely	validate	any	
model	subject	to	similar	error	biases.	

	
	 Nevertheless,	[Dessler,	2013],	enquoted	reanalysis	fields	as	"the	observations"	when	first	
introduced,	but	thereafter	uncritically	presented	reanalysis	as	observations	when	
compared	to	direct	model	simulations.		

	
	 Further,	[Dessler,	2013]	used	the	kernel	approach	of	[Soden	et	al.,	2008]	to	compute	cloud	
feedback	properties,	although	[Soden	et	al.,	2008]	warned	against	this	use.	E.g.,	“A	
limitation	of	the	kernels	is	that	the	radiative	effects	of	clouds,	particularly	the	vertical	
overlap	of	clouds,	are	too	nonlinear	to	accurately	compute	cloud	feedback	using	this	
method."		

	
	 [Soden	et	al.,	2008]	go	on	to	derive	an	alternative	to	the	kernel	approach	of	cloud	forcing.	
But	in	that	event,	they	evaluate	this	alternative	by	reference	to	the	cloud	simulations	
produced	by	the	GFDL	climate	model,	not	to	real-world	observations.	

	
	 Thus	the	kernel	calculations	used	in	[Dessler,	2013]	to	evaluate	model	results	were	
validated	in	[Soden	et	al.,	2008]	by	reference	to	model	results.	The	approach	in	[Dessler,	
2013]	is	thus	fundamentally	circular.	

	
	 The	kernel	approach	again	assumed	a	linear	climate	response,	valid	over	only	small	
perturbations	and	short	times.	However,	[Dessler,	2013]	applied	the	method	across	10	
years.		

	
	 [Dee	et	al.,	2011]	evaluated	the	ECMWF	and	ERA-Interim	reanalysis	products	for	forecast	
accuracy.	Their	Figure	2	is	relevant;	showing	accumulated	850	hPa	air	temperature	errors	
of	1.7	C	and	1.55	C,	respectively,	after	only	9	forecast	days.	This	result	is	hardly	
encouraging	for	use	of	reanalysis	to	judge	the	accuracy	of	the	10-year	forecast	in	[Dessler,	
2013].	

	
	 The	reviewer	would	have	it	that	these	forecast	errors	are	irrelevant,	because	the	change	
in	temperature	is	the	only	important	metric.	However,	Section	1.2	above	showed	this	
proposal	is	insupportable.	

	
	 Further,	if	air	temperature	is	incorrect,	the	partitioning	of	energy	flux	is	incorrect.	With	
incorrect	energy	flux	distributions	how,	then,	is	the	simulated	climate	to	evolve	along	its	
energetic	phase-space	trajectory	in	an	identical	fashion	with	the	phase-space	trajectory	of	
the	physically	real	climate,	but	merely	with	a	constant	offset?		

	
	 [Dessler,	2013]	itself	cautioned	that	reanalysis	cloud	feedback	is	poorly	constrained,	and	
advised	against	an	uncritical	acceptance	of	the	reanalysis	products.	Thus,	under	Section	3,	
p.	335:		
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	 “While	there	is	good	agreement	for	the	total	cloud	feedback	in	the	two	reanalyses,	the	
calculations	using	MERRA	predict	that	the	majority	of	the	cloud	feedback	comes	from	
changes	in	the	shortwave	effects	of	clouds,	while	the	calculations	using	the	ERAInterim	
suggest	that	almost	all	of	the	cloud	feedback	is	due	to	changes	in	the	longwave.	Note	
that	 both	 the	 ERA-Interim	 and	 MERRA	 calculations	 use	 the	 same	 ΔRall-sky	
measurements	from	CERES."	

	
	 That	is,	despite	starting	from	the	same	CERES	observations,	the	two	reanalysis	products	
differ	in	their	accounting	of	cloud	feedback.	The	MERRA	feedback,	in	shortwave	CF,	has	
small	effect	on	the	tropospheric	thermal	energy	flux,	while	ERAInterim	feedback,	in	
longwave	CF,	necessarily	impacts	this	flux.		

	
	 Although	the	feedbacks	have	the	same	total	magnitude,	the	energy	flux	partitioning	is	
strongly	disparate.	Which	reanalysis,	then,	should	provide	the	standard	for	judging	model	
accuracy	with	respect	to	cloud	feedbacks?		

	
	 In	short,	[Dessler,	2013]	applied	a	kernel	calculation	likely	beyond	its	relevance,	judged	
model	results	against	a	kernel	methodology	that	was	validated	using	models	(not	
observations),	and	uncritically	used	reanalysis	products	relevant	to	short-term	
meteorological	forecasts	as	observations	to	evaluate	decadal	climate	projections.		

	
	 Nevertheless,	throughout	[Dessler,	2013],	cautions	are	given	about	the	unreliability	of	
simulated	cloud	feedback.	The	final	and	summing-up	sentence	in	the	entire	paper	is,	
"Finally,	this	analysis	confirms	that	the	biggest	uncertainty	is	the	cloud	feedback."	

	
	 Despite	this,	the	reviewer	offered	[Dessler,	2013]	as	a	critical	refutation	of	cloud	feedback	
error.		

	
	 However,	the	fact	remains	that	the	explicit	cautions	about	cloud	forcing	given	in	[Dessler,	
2013]	validate	the	focus	of	the	present	manuscript	on	long	wave	cloud	forcing	error.	

	
	 Additional	evidence	to	this	point	is	that	[Su	et	al.,	2013],	page	2766,	par	[16],	explicitly	
admits	of	large-scale	(theory-bias)	and	small-scale	(parameterization)	physical	errors	in	
cloud	simulations.	

	
	
1.5	The	hidden	uncertainty	in	simulated	air	temperature	anomalies.	
	
	 Finally,	the	impact	of	uncertainty	on	the	reliability	of	projection	anomalies	is	taken	up.	
Figure	R2	below	is	taken	from	the	CMIP2	comparison	project,	but	the	analysis	will	be	
equally	applicable	to	CMIP3	and	CMIP5	model	simulations.	
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	 Figure	R2:	the	projected	global	averaged	air	temperature	changes	from	an	annual	1%	
increase	in	CO2.	Top,	CMIP2	control	runs	from	Figure	1	of	[Covey	et	al.,	2003];	bottom,	
anomaly	temperatures	from	the	same	models,	from	Figure	1	of	[Meehl	et	al.,	2005].	

	
	
	 The	models	were	adjusted	in	various	ways	[Meehl	et	al.,	2000],	but	fact	of	adjustment	
itself	does	not	distinguish	the	CMIP2	versions	from	more	advanced	models	[Bender,	2008;	
Kiehl,	2007;	Knutti,	2010;	Knutti	et	al.,	2010;	Rasch,	2012].		

	
	 All	climate	models	including	the	CMIP3	and	CMIP5	versions	deploy	erroneous	theory	and	
include	parameters	with	significant	uncertainties	in	magnitude.	This	means	the	simulated	
global	average	base	temperatures	in	Figure	R2,	top	are	not	known	to	be	correct.	That	is,	
they	include	physical	error,	which	is	distinct	from	the	5	K	spread	of	temperatures	among	
the	models.	None	of	the	simulated	base	temperatures	is	known	to	be	the	physically	
correct	base	temperature	of	the	terrestrial	climate,	nor	is	any	one	of	them	known	to	be	
more	physically	correct	than	any	of	the	others.	

	
	 This	means	that	each	baseline	projection	should	include	an	uncertainty	envelope	
indicating	that	the	temperature	does	not	follow	from	a	physically	correct	description	of	
the	climate,	nor	from	physically	correct	magnitude	relationships	among	the	
parameterized	climate	variables.		

	
	 That	is,	e.g.,	the	15.5	C	baseline	temperature	of	the	BMRC	model	is	not	known	to	be	the	
physically	correct	baseline	temperature	that	properly	reflects	the	specific	climate	
variables	employed	within	the	BMRC	model.	The	15.5	C	line	is	merely	the	baseline	
temperature	simulated	by	that	particular	model,	given	the	structure	of	the	physical	theory	
and	the	values	of	the	parameters.	
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	 Suppose	the	physical	uncertainty	associated	with	the	BMRC	baseline	temperature	
stemming	from	theory	error	and	parameter	uncertainty	was	evaluated	as	±2.5	C	(a	
conservative	estimate,	given	model	LWCF	error	alone).	

	
	 Now	looking	at	Figure	R2,	bottom,	the	same	considerations	apply.	All	the	projections	were	
carried	out	using	erroneous	theory	and	disparate	sets	of	uncertain	parameter	magnitudes.	
The	projected	air	temperatures	are	not	known	to	be	the	physically	correct	temperatures	
for	the	given	forcings	and	parameter	values.		

	
	 All	the	temperature	projections	from	which	the	anomalies	derive	should	have	included	
uncertainty	envelopes	to	convey	the	fact	that	the	projected	air	temperatures	are	not	
known	to	be	physically	correct	with	respect	to	the	true	climate	response,	and	are	not	
known	to	be	the	physically	correct	expression	of	the	choices	of	parameter	magnitudes.	

	
	 That	is,	the	physics	underlying	the	projections	is	not	known	to	be	correct.	Thus	the	air	
temperatures	are	not	known	to	reflect	the	operation	of	the	physically	true	terrestrial	
climate.		

	
	 The	uncertainty	of	the	physical	verity	of	the	projected	temperatures	would	remain	even	if	
it	could	be	shown	that	the	temperature	magnitudes	themselves	followed	the	observed	air	
temperatures.	This	is	because,	again,	the	physics	that	produced	those	temperatures	is	not	
known	to	be	correct.	Therefore	the	projected	temperatures	do	not	convey	any	knowledge	
about	the	underlying	state	of	the	physically	real	climate,	even	if	they	happen	to	track	
observed	temperatures.	This	lack	of	knowledge	is	the	key	information	conveyed	by	
uncertainty	bars.	

	
	 This	being	true,	then	calculating	an	anomaly	requires	combining	in	quadrature	the	
uncertainty	in	the	baseline	projection	with	the	uncertainty	in	the	projection	[Bevington	
and	Robinson,	2003].	If	the	mean	projection	uncertainty	was	again	±2.5	C,	then	the	mean	
uncertainty	in	the	anomalies	would	be	±3.5	C.	The	1σ	uncertainty	range	extends	past	the	
plot	limits.	None	of	the	anomalies	would	have	any	physical	meaning.	

	
	 This	is	the	same	result	as	obtains	when	the	known	annual	average	CMIP5	±4	Wm-2	LWCF	
error	is	propagated	through	an	air	temperature	projection.	

	
2.1	Thus,	taking	an	error	in	the	base	state	and	assuming	that	error	translates	into	the	error	in	
the	climate	response	is	unsupported	by	previously	published	analyses.	
	

2.1	Section	1	above	has	shown	the	reviewer's	conclusion	here	is	misguided.	
	
2.2	It	also	leads	to	some	ridiculous	conclusions.	For	example,	Fig.	7b	of	the	paper	shows	that	the	
uncertainty	envelope	of	future	temperatures	ranges	from	-15°C	to	+20°C.	In	other	words,	the	
author	suggests	that	anthropogenic	forcing	could	lead	to	**cooling**	of	the	climate.	That's	an	
conclusion:	simple	physics	tells	us	that	a	positive	radiative	forcing	will	lead	to	warming.	The	
fact	that	the	uncertainty	envelope	includes	cooling	tells	me	that	this	uncertainty	calculation	is	
fatally	flawed.	

	
2.2.1	Nothing	whatever	in	the	manuscript	suggests	"that	anthropogenic	forcing	could	lead	to	



 11 

**cooling**	of	the	climate."	The	reviewer	has	mistaken	an	uncertainty	statistic	for	a	
physical	temperature.	This	is	the	mistake	of	a	naive	college	freshman.	

	
	 The	meaning	of	uncertainty	was	broached	in	the	Introduction,	line	179,	directing	the	
reader	to	SI	Section	10:	"The	Meaning	of	Uncertainty	in	Model	Projections."	All	of	SI	
Section	10	is	devoted	to	the	meaning	of	physical	uncertainty.	Unfortunately,	the	reviewer	
has	apparently	not	consulted	this	discussion.	

	
	 The	large	uncertainty	does	not	indicate	possible	air	temperatures.	Rather,	it	shows	that	
the	projection	provides	no	information	about	future	air	temperatures.	

	
	 In	mistaking	this	judgment	about	air	temperature,	the	reviewer	has	also	misconstrued	the	

±4	Wm-2	error	statistic	as	an	energetic	perturbation	on	the	climate.	That	is,	one	could	not	
have	a	±15	C	temperature	excursion	without	a	±4	Wm-2	flux	perturbation.		

	
	 But,	of	course,	the	±15	C	is	not	a	temperature;	it	is	an	uncertainty.	Likewise	the	±4	Wm-2	is	
not	an	energetic	flux;	it	is	an	error	statistic.	

	
	 The	reviewer	might	have	wondered	how	an	air	temperature,	or	a	flux	change,	could	be	
simultaneously	positive	and	negative,	i.e.,	"±."	Doing	so	might	have	recommended	against	
making	the	criticism.	

	
	 Given	the	author's	experience	with	the	ubiquity	of	uncertainty	as	a	foreign	concept	among	
climate	modelers,	a	new	paragraph	has	been	added	to	manuscript	section	three,	after	
previous	line	763,	to	further	explain	why	±uncertainty	statistics	are	not	physical	
temperatures	or	energetic	fluxes.	

	
2.2.2	The	author	wishes	here	to	address	the	reviewer's	assertion	that,	"simple	physics	tells	
us	that	a	positive	radiative	forcing	will	lead	to	warming,"	because	this	mistake	in	thinking	
is	common	among	climate	modelers	and	lays	at	the	heart	of	the	reviewer's	objections.		

	
	 First,	the	radiation	physics	is	clear:	CO2	transduces	radiant	energy	into	atmospheric	kinetic	
energy	[Houghton,	1995;	Plass,	1956a;	b].	However,	the	logical	jump	from	that	undoubted	
fact	to	conclude,	as	the	reviewer	does,	that	added	CO2	necessarily	causes	a	warming	of	
the	climate	presumes	no	important	negative	feedbacks.		

	
	 However,	the	terrestrial	climate	has	fast	response	channels,	most	notably	those	involving	
convection,	evaporation,	and	condensation.	These	responses	are	sub-grid	and	remain	
poorly	modeled	[Kandel	and	Viollier,	2010;	Mauritsen	and	Stevens,	2016;	Su	et	al.,	2013;	
Zhao	et	al.,	2016].		

	
	 It	has	been	known	for	at	least	50	years	that	the	entire	influence	of	CO2	forcing	can	be	
neutralized	by	relatively	small	changes	in	the	hydrological	cycle.[Hartmann,	2002;	Möller,	
1963;	1964]	The	reviewer's	strong	conclusion	improperly	ignores	these	possibilities	and	
the	uncertainty	they	place	on	concluding	an	inevitable	warming	effect	from	added	CO2.	

	
2.2.3	Perhaps	more	fundamentally,	the	reviewer's	strong	conclusion	rests	on	an	unspoken	
supposition	that	the	Stefan-Boltzmann	equation	is	an	adequate	theory	of	the	terrestrial	
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climate;	adequate	to	predict	the	physically	real	effect	of	an	increase	in	atmospheric	CO2	
forcing.	However,	it	is	not	and	cannot.	

	
3.1	There	are	many	other	reasons	to	suspect	that	this	uncertainty	analysis	is	wrong.	If	errors	in	
the	base	state	translated	into	errors	in	the	climate	response,	then	why	do	all	of	the	models	
predict	very	similar	values	for	the	1%	runs	in	Fig.	2a?	
	
3.1	The	answer	to	this	question	is	obvious.	The	models	predict	similar	values	because	they	
have	been	constructed	and	tuned	to	do	so.	This	fact	is	fully	demonstrated	in	[Kiehl,	2007].	

	
	 One	also	notes	that	propagated	uncertainty	reflects	the	knowledge-state	of	the	
underlying	physics,	without	reference	to	the	magnitudes	or	trends	of	model	expectation	
values,	or	their	similarity	among	models.		

	
3.2	And	why	do	the	models	have	(relatively)	similar	climate	sensitivities?		

	
3.2	[Kiehl,	2007]	also	showed	that	model	climate	sensitivity	(CS)	magnitudes	vary	over	a	
factor	of	two	to	three.	This	is	hardly	"similar."	Some	of	the	disparity	in	climate	sensitivity	
among	models	is	suppressed	(and	thus	made	invisible)	by	offsetting	parameter	errors.	

	
	 The	reviewer's	comment	relies	for	its	critical	force	on	an	implied	single-valued	CS	for	each	
climate	model.	However,	this	implication	is	not	correct.	For	example,	[Rowlands	et	al.,	
2012]	Figure	1	shows	the	single	HADCM3L	model	exhibits	a	0.3-1.2	°C/(Wm-2)	range	of	
transient	CS	magnitudes	for	the	SRES	A1B	scenario,	with	the	specific	CS	depending	upon	
choice	of	parameter	sets.	

	
	 The	single	value	of	CS	given	per	model	in	Table	9.5	in	[IPCC,	2013]	is	therefore	misleading.	
Each	model	has	its	own	uncertainty	range	of	CS	magnitudes.	The	average	uncertainty	
reflecting	the	model	single-value	CS	mean	value	in	[IPCC,	2013]	Table	9.5	should	be	
convolved	with,	at	the	least,	the	average	range	of	CS	uncertainty	for	each	individual	model.	

	
	 It	is	thus	more	accurate	to	observe	that	models	have	similar	ranges	of	CS	uncertainties.	
These	uncertainties	should	be	propagated	through	any	air	temperature	projection	
following	from	GHG	emissions.		

	
	 And	similarity	among	models	is	no	indication	of	physical	accuracy.	Nor	is	it	known	that	the	
standard	range	of	CS	uncertainties	includes	the	physically	correct	magnitude	of	the	
physically	real	climate.		

	
3.3	The	reason	is	that	the	feedbacks	are	similar	in	the	models	(Dessler,	2013)	and	the	forcing	
from	carbon	dioxide	is	also	similar	(e.g.,	Andrews	et	al.	(2012),	Forcing,	feedbacks	and	climate	
sensitivity	in	CMIP5	coupled	atmosphere-ocean	climate	models,	Geophys.	Res.	Lett.,	39,	doi:	
10.1029/2012gl051607).	Thus,	despite	the	documented	biases	in	the	models,	all	of	the	
evidence	we	have	tells	us	that	those	biases	don't	affect	the	climate	response	of	the	model.	

	
3.3.1	[Andrews	et	al.,	2012]	is	an	extension	of	the	[Gregory	et	al.,	2004]	study	showing	that	
the	climate	sensitivity	of	virtually	any	CMIP5	model	is	closely	estimated	in	the	linear	
equation	N	=	F-αΔT,	where	N	=	TOA	radiative	flux	(Wm-2),	F	=	a	radiative	perturbation	
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(Wm-2),	α	=	climate	sensitivity	((Wm-2)K-1),	and	ΔT	(K)	is	the	change	in	air	temperature.		
	
	 Rearranging,	ΔT	=	(F-N)/α,	will	emulate	the	air	temperature	projection	of	any	CMIP5	
model	to	a	very	good	approximation.		

	
	 [Gregory	et	al.,	2004]	and	[Andrews	et	al.,	2012]	show	that	CMIP5	air	temperature	
projections	are	linear	extrapolations	of	forcing,	including	GHG	forcing.		

	
	 Linear	propagation	of	error	follows	directly	[Vasquez	and	Whiting,	2006].	These	studies	
thus	corroborate	the	author's	previous	work	[P.	Frank,	2008],	and	validate	the	analysis	in	
the	present	manuscript.	

	
	 In	approving	of	[Andrews	et	al.,	2012],	the	reviewer	has	inadvertently	validated	the	
propagated	error	analysis	of	manuscript	2017EA000256.	

	
3.3.2	The	[Andrews	et	al.,	2012]	study	is	focused	entirely	on	model	precision.	The	
comparisons	are	restricted	to	climate	models.	The	calculated	uncertainties	are	a	bootstrap	
sampling	of	model	expectation	values.	There	is	no	mention	of	physical	error.	Nor	are	any	
of	the	uncertainties	physically	grounded.	

	
	 Nothing	in	[Andrews	et	al.,	2012]	indicates	anything	about	the	physical	accuracy	of	model	
projections,	or	provides	any	reassurance	on	these	grounds.	

	
	 The	reviewer's	comment	shows	no	awareness	that	uniformity	in	the	climate	response	of	
models	is	no	indication	of	physical	accuracy	and	no	indication	of	projection	reliability.		

	
4.	In	addition	to	the	fundamental	error	noted	above,	the	paper	is	littered	with	other	serious	
errors,	many	of	which	would	merit	rejection	on	their	own.	Here	are	two	examples:	

	
4.	As	a	matter	of	consistency,	to	this	point	none	of	the	reviewer's	criticisms	has	withstood	
critical	scrutiny.	
	

4.1	The	"passive	warming	model"	ignores	important	physics	-	namely,	the	heat	capacity	of	the	
ocean	and	how	it	slows	warming	of	the	planet.	Simple	models	incorporating	this	have	been	
calibrated	to	the	GCMs	by	other	researchers	(e.g.,	Geoffrey	et	al.	(2013),	Transient	Climate	
Response	in	a	Two-Layer	Energy-Balance	Model.	Part	I:	Analytical	Solution	and	Parameter	
Calibration	Using	CMIP5	AOGCM	Experiments,	J.	Climate,	26,	1841-1857,	doi:	10.1175/jcli-d-
12-00195.1),	and	the	author	should	look	at	these	other	papers	to	see	how	it	should	be	done.	

	
4.1	Manuscript	Introduction	lines	124-127	informs	that	the	analysis	focuses	on	the	behavior	
of	climate	models,	not	on	the	behavior	of	the	climate.	The	reviewer	missed	this	absolutely	
central	point	in	raising	the	issue	of	ocean	heat	capacity.	

	
	 Lines	149ff	make	this	point	again,	namely	that	model	behavior	is	emulated;	not	climate.	
Manuscript	eqn.	6	shows	only	that	climate	model	air	temperature	projections	just	linearly	
extrapolate	forcing.	

	
	 Ironically,	[Andrews	et	al.,	2012]	shows	the	same	linear	dependence	and	also	neglects	
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ocean	heat	capacity,	but	found	approval	with	the	reviewer.	
	
4.2	The	author	calculates	the	fraction	of	the	greenhouse	effect	due	to	CO2	and	comes	up	with	
42%.	As	the	author	acknowledge,	this	is	much	higher	than	previously	published	estimates,	
which	put	the	number	closer	to	20%.	

	
4.2	The	20%	fraction	was	determined	by	[Lacis	et	al.,	2010],	and	is	specific	to	GISS	Model	E.	
The	limited	meaning	of	the	Lacis	result	was	discussed	in	detail	in	manuscript	Section	2.2	
lines	363-378.	

	
	 The	manuscript	analysis	notes	the	wide	variation	of	forcing	fraction	among	climate	models	
and	ends	by	observing	that,	"the	sensitivity	of	the	terrestrial	climate	to	greenhouse	gas	
forcing	as	derived	from	any	one	climate	model	is	not	generalizable	to	other	models,	and	is	
thus	also	not	necessarily	indicative	of	the	physically	real	response	of	the	terrestrial	
climate."	

	
	 CO2	sensitivity	fractions	for	CIMP3	and	CMIP5	models	ranging	from	about	0.37	through	0.9	
are	shown	in	Tables	S1	through	S4.		

	
	 These	results	taken	together	vacate	the	reviewer's	objection.	
	
	

4.3	In	order	to	get	42%,	the	author	assumes	that	clouds	contribute	nothing	to	the	greenhouse	
effect,	which	is	absurd.		

	
4.3	The	reviewer	is	factually	incorrect.	The	0.42	fraction	comes	directly	from	assessing	the	
work	of	[Manabe	and	Wetherald,	1967],	which	specifically	included	the	impact	of	cloud	
cover	on	the	CO2	greenhouse	effect.	The	analysis	of	[Manabe	and	Wetherald,	1967]	is	
displayed	in	manuscript	Figure	1	and	constitutes	all	of	manuscript	Section	2.1.	It	is	very	
difficult	to	understand	how	the	reviewer	overlooked	this.	

	
4.4	This	seems	like	a	minor	issue,	but	the	42%	number	plays	a	key	role	in	the	analysis	(e.g.,	eq	6)	
and	replacing	it	with	a	more	reasonable	choice	might	create	grave	problems.	If	the	author	
wants	to	stick	with	42%,	then	they	have	to	provide	some	evidence	that	clouds	contribute	little	
to	the	greenhouse	effect.	

	
4.4	Response	item	4.3	and	consultation	of	manuscript	Section	2.1	completely	vitiate	the	
reviewer's	objection	here.	Cloud	cover	was	included	in	[Manabe	and	Wetherald,	1967],	
and	was	explicitly	included	in	the	derivation	of	the	0.42	fraction	in	eqn.	6	(cf.	manuscript	
Section	2.1.3).	

	
5.	I	could	go	on	and	provide	more	examples	of	problems	in	the	paper,	but	I	hope	I've	made	my	
point	that	this	paper	is	not	publishable	in	anything	close	to	its	present	form.	

	
5.	The	reviewer	has	throughout	evidenced	an	uncritical	acceptance	of	model	precision	as	
reflective	of	physical	accuracy.	The	reviewer	has	also	overlooked	virtually	every	critical	
element	of	the	manuscript	that	establishes	the	analysis,	most	especially	that	linear	
extrapolation	of	GHG	forcing	completely	warrants	linear	propagation	of	error.		
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