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2013JD020840 Patrick Frank 
 
Response to Reviewer #2: 
 
Summary response: 

• The uncertainty propagated in the study has been changed to the CMIP5 ±4 Wm-2 
long wave cloud forcing error derived in [Lauer and Hamilton, 2013].  

• The reviewer has misapprehended the focus of the study, which is not to relate 
cloud forcing to energy balance. 

• The examples of propagated GCM error provided by the reviewer do not in fact 
include propagated error. 

• The reviewer has misapprehended the author’s assumption about cloud forcing. 
• The reviewer’s view that model tuning removes simulation uncertainty is not 

correct. 
 
 
Reviewer comments are indented and in italics, followed by the author response. 
 

1. This is an interesting analysis of uncertainty using a simple but remarkably 
accurate model of climate sensitivity. Unfortunately, the author makes a fatal error in 
attributing systematic bias in simulated cloud forcing to uncertainty in simulated 
energy balance.  

 
1. As noted in items 11 and 13 below, the manuscript analysis does not refer simulated 

total cloud forcing (TCF) error to simulated energy balance. Rather, TCF error is 
presented as a lower limit of GCM resolution of the energy state of the climate system, 
and referred specifically to atmospheric thermal flux. Specifically, climate models are 
unable to resolve the partitioning of energy within the climate system to better than ±4 
Wm-2.  

 
Within a modeled climate, total energy can be in balance even while the internal 
energy is incorrectly partitioned. When internal energy is incorrectly partitioned a 
modeled climate will not evolve correctly. The reviewer’s final judgment is thus 
grounded in a misdiagnosis. 

 
2. Lines 114-117. Examples of uncertainty propagation:  

Stainforth, D. et al., 2005: Uncertainty in predictions of the climate response to 
rising levels of greenhouse gases. Nature 433, 403-406.  
M. Collins, R. E. Chandler, P. M. Cox, J. M. Huthnance, J. Rougier and D. B. 
Stephenson, 2012: Quantifying future climate change. Nature Climate Change, 2, 
403-409, DOI: 10.1038/NCLIMATE1414.  

 
2. It is shown in 2.1 and 2.2 below that neither of the reviewer’s examples provide 

propagated error, as it is described in original manuscript pp. 5-6, lines 92-107 and 
equation 2, and in manuscript Section 2.4.2, pp. 20, 21, lines 424-452 and eq. 8.  
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The manuscript method of error propagation is referenced to the recommendations of 
the ISO JCGM, of NIST, and to the literature (Vasquez and Whiting, 1998 & 2005). 

 
2.1 Stainforth, et al., 2005 includes three Figures; all of them present uncertainties 

relative to a model mean: 
• Figure 1: “Frequency distributions of [global temperature] through the three 

phases of [model] simulation.”  
• Figure 2a,2b,2c: “The [modeled] response to parameter perturbations.” All the 

uncertainty bars in Figures 2a-2c reflect model variability.  
• Finally, from page 405 of Stainforth: “Figure 3 shows the initial-condition 

ensemble-mean of the temperature and precipitation changes for years 8–15 after 
doubling CO2 concentrations, for three model versions...” 

 
These quotes verify the point made in the manuscript, namely that uncertainties stem 
from variations around model means – precision – rather than derived from 
observational error – accuracy. 

 
Nowhere in the manuscript did Stainforth, et al., mention or present error propagated 
through a projection. 

 
2.2 Figure 1 in Collins, et al., 2012, describes the approach to air temperature projections 

and their evaluation:  
 

“Figure 1: A schematic of the general framework for producing projections of 
future climate. ... The model may be run with different parameter values p1, 
p2, … to produce simulations of historical climate ch, and projections of future 
climate, cf. ... The simulations of historical climate may be compared with 
observations, o, using a metric, and taking into account observational errors. If 
one point in the climate model parameter space, p1, produces a better 
simulation of historical climate than another point p2, then the hope is that it 
will give a better (that is, less error-prone) simulation of future climate.” 

 
Collins, et al., 2012, state that mere approach to observational magnitude is enough to 
“hope” that a model has physical validity. Propagation of observational error is never 
mentioned. They explain the standard approach in this way:  

 
“The model is calibrated by determining suitable values for the internal 
parameters that produce simulations of past climate consistent with the 
observations and their uncertainties. 
 
“Having calibrated the model, ... [it] acts as a physically-based device to 
pass from historical or past climate and climate change to future 
projections.” 

 
This approach assumes that the internal dynamics of the model accurately reflect 
climate, once the parameter set has been tuned to observations. It completely ignores 
theory bias. 
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The problem is exemplified in their Figure 3. Figure 3a shows how the range of 
climate sensitivity affects air temperature projections. Figure 3b shows two 
histograms; the first is projection variance around the observed global air temperature 
for the year 2000, and the second extrapolates that variance as an uncertainty in 
projected air temperature for the year 2050. 
 
From the Figure Legend: 

 
“a, Global mean temperature anomalies produced using an EBM forced by 
historical changes in well-mixed greenhouse gases and future increases 
based on [IPCC SRES scenario A1B]. The different curves are generated by 
varying the feedback parameter (climate sensitivity) in the EBM. b, 
Changes in global mean temperature at 2050 versus global mean 
temperature at the year 2000, obtained from the figure in a showing the 
relationship between past changes and future temperature changes.”  

 
 
None of the projections in Figure 3a display physically valid uncertainty bars. The 
range of possible air temperature trends in Figure 3a is presented as though the energy 
balance model (EBM) they used is a perfect climate model and that climate sensitivity 
were the only model unknown. But, of course, neither is true.  
 
An EBM does not reproduce the response of the full terrestrial climate system to the 
changing energy state of the atmosphere. Therefore, the simulated atmospheric energy 
flux is necessarily incorrect. Every step of every EBM simulation projects the internal 
energy state of the climate incorrectly. This is ignored in Collins, et al., 2012. 
 
Every projection in Figure 3a should have its own confidence intervals representing 
the uncertainty in the state of the projected climate; an uncertainty which increases 
with each calculational step. However, error is not propagated in Collins, et al., 2012. 
 
Properly expressed, the 2050 uncertainty histogram in Figure 3b should be the 
uncertainty represented by the Figure 3a histogram combined in quadrature with the 
uncertainty in projection year 2050 as derived from the climate state uncertainty 
propagated through the simulation.  
 
Figure 3 in Collins, et al., 2012 projects SRES A1B forcing. Revised manuscript 
Figure 5 shows that for the A1B scenario as projected from 1999, the uncertainty in 
global air temperature arising from ±4 Wm-2 cloud forcing error alone is ±1.6 K in 
year 2000 and ±11 K in year 2050. A projection from 1850, as done by Collins, et al., 
would have much wider confidence intervals. 
 
If the implicit ‘perfect model, single unknown’ assumptions of Figure 3 were correct, 
then the projection closest to the observed temperature trend would establish the most 
credible deduced physical magnitude for climate sensitivity. But such a deduction is 
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never claimed, which lacuna illuminates the contradiction that the assumptions are 
accepted in the context of the Figure but rejected in the wider context of climate 
physics. 

 
 

3. Lines 168-169. The CO2 forcing does not vanish when the condition holds. It 
becomes progressively smaller.  

 
3. “Zero forcing” has been changed to negligible forcing. 
 

4. Line 256. What is meant by pristine? 
 

4. Pristine was meant to convey, and is now replaced by, ‘unperturbed.’  
 

5. Line 261. Where do the numbers 269.3 and 283.7 come from?  
 

5. The origin of the numbers is specified in the immediately preceding paragraph 
beginning at line 246, section 2.1.3 “The fractional wve CO2 forcing.” They are the 
intercepts of the fits at 1 ppm CO2 in Figure 1b. 

 
6. Line 263. We cannot expect this fraction to remain invariant as CO2 increases.  
 

6. The wve GH fraction concerns the behavior of climate models, not of climate. Figures 
S3-S6 in the Auxiliary Material show that a constant fraction is sufficient to reproduce 
the projections of all tested CMIP3 GCMs.  
  
Beyond that, although constant within each scenario, the fraction varies for the same 
GCM across scenarios, and among GCMs for the identical scenario. Tables S1-S3 
show that the wve GH fraction varies among GCMs by a factor of 2.6. 

 
7. Line 369. Is lag-1 a one-year lag? Please specify.  

 
7. The lag-1 is in the 2-degree latitudinal steps of the GCM global cloud fraction 

hindcast. This is now specified in the text and Table. The autocorrelation of error is 
spatial rather than temporal. 

 
8. Lines 382-383. Such probabilities seem incredible. What is the basis for the 

estimates?  
 

8. From line 381: “Were the TCF errors normally distributed, the probability...” For a 
population of random series with normally distributed pair-wise correlations, the most 
probable pair-wise correlation is zero. A pair-wise correlation of 0.9 is of probability 10-17. 
The manuscript has been modified to make this point more clearly. 

 
9. Lines 405-412. This analysis assumes all clouds produce the same cloud forcing, 
which is absolutely false. Low clouds produce a very strong cooling of up to 100 
W/m2, while high thin clouds produce a strong warming. High thick clouds produce a 
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small forcing due to balancing between solar cooling and longwave warming. Given 
the variety of radiative forcing by clouds, one cannot translate a global cloud fraction 
error into an error in cloud radiative forcing. 

 
9. The reviewer has misapprehended the author’s assumption, which is that cloud forcing 

error can be estimated as a linear fraction, when it stems from a relatively modest 
(±12%) error in a multi-year multi-model average hindcast of global total cloud 
fraction (TCF), relative to the same multi-year average of observed TCF.  

 
In comparing multi-year multi-model averages of total global cloud fraction vs. multi-
year averages of observed global total cloud fraction, only multi-year means are 
compared. Model-distinctive variations can average away. Year-by-year observational 
variations average away. 

 
That is, it is assumed that the change in global average cloud forcing following from 
small changes in the total multi-year average global cloud fraction can be 
approximated linearly. 

 
This is a very different assumption than that all sorts of cloud produce the same 
forcing.  

 
 

10. In addition, the term "cloud feedback" is reserved for the response of cloud 
radiative forcing to changes in surface temperature, the diversity of which drives 
much of the diversity in sensitivity of simulated warming to increasing CO2.  

 
9. The term has been changed to cloud forcing throughout. 
 

11. Lines 414-418. Your estimate of radiative flux uncertainty cannot be compared 
with the greenhouse gas forcing. All climate models are adjusted to ensure the Earth 
is in radiative energy balance (to within less than 1 W/m2) before CO2 is changed. 
Otherwise the simulated climates will drift even without increasing CO2. 

 
11.1 Cloud forcing contributes to the total atmospheric thermal radiative flux. GHG 

forcing contributes to the identical total atmospheric thermal flux. The total thermal 
flux of the atmosphere determines air temperature. Uncertainty in the magnitude of 
cloud forcing injects uncertainty into the total energy flux, which in turn makes 
uncertain the impact of GHGs. This coupling is a direct consequence of the physics of 
the system. 

 
The coupling of cloud forcing and GHG fluxes was discussed under section 2.4.2, line 
424 (p. 20) and under section 3, line 614ff (p. 29). 

 
11.2 The reviewer has ignored manuscript lines 634-666, where it is shown that model 

tuning does not dismiss projection error. The TOA flux mentioned by the reviewer is 
used to illustrate the problem (line 664).  
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TOA flux has an observational uncertain of ±3.9 Wm-2. [Stephens et al., 2012] 
Therefore, it is unclear how models can be tuned to within less than ±1 Wm-2 of true 
TOA radiative balance.  

 
Rather, models are likely tuned to within  ±1 Wm-2 of the observational mean of TOA 
flux, which is a very different standard and which does not remove the observational 
uncertainty. 

 
12. The above considerations render the rest of the analysis meaningless. 
 

12. Items 1-11 show that the reviewer has not made this case. 
 

13. If the simulated Earth energy balance were as off as the author suggests, none of 
the climate simulations would be realistic. 

 
13. The analysis does not concern energy balance. The analysis concerns resolution of the 

energy state. TCF error provides a lower limit of model resolution of the climate 
energy state. This error shows that the internal energy state of the climate is incorrectly 
modeled. The model climate can be in over-all energy balance while the internal state 
is incorrect. The internal state of the climate – the way the total energy is partitioned 
among the climate subsystems -- determines the air temperature.  

 
The author is compelled to add that physically predictive, not “realistic,” is the 
measure of science.  

 
 14. The author should consult the IPCC AR5 for extensive evaluation of historical 

simulations of climate change for the last century.  
 

14. The author has examined the IPCC AR4 in detail. All GCM evaluations involved 
tuned models. Hindcasts hid their projection uncertainty within anti-correlated errors. 
No IPCC evaluation of any climate simulation considered, included, or displayed 
propagated errors. There is no reason to think the AR5 will be different. 
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