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Patrick Frank        24 March 2014 
Propagation of Error and the Reliability of Global Air Temperature Projections  
JGR-Atm submission 2013JD021338 
 
Response to Reviewer #1:  

Summary 
• The reviewer has repudiated the distinction between accuracy and precision as a 

“philosophical rant,” when in fact the distinction is central to physics. 
• The review evidences a lack in understanding of propagated error, item 3. 
• The reviewer has mistakenly assumed that differencing between modeled climate 

observables is identical to differencing between modeled and physically measured 
climate observables, items 4 and 8. 

• The reviewer is apparently unaware that the large measurement uncertainties 
vitiate attribution and validation, item 5. 

 
Reviewer comments are presented in full, justified, numbered, and in italics.  
 

1. I have very few detailed comments on this manuscript.  
 

Too much of this paper consists of philosophical rants (e.g., accuracy vs. 
precision),... 
 
Response item 1. The distinction between accuracy and precision is basic to all of 
measurement physics. Accurate measurements are the test of physical theory and the 
source of scientific knowledge. It is hardly philosophy.  
 
This manuscript focuses on the accuracy of climate models. The Introduction notes that 
published model evaluations chiefly concern precision rather than accuracy. Establishing 
the distinction and relaying its fundamental importance, is therefore an obvious sine qua 
non for the subsequent analysis. 
 
Chapter 7 in Wilks, “Statistical Methods in the Atmospheric Sciences,” presents an 
extensive discussion of the meaning of model accuracy and resolution. [Wilks, 1995] 
Presumably the reviewer sees this, too, as a “philosophical rant.”  
 
Reference of theory to potentially falsifying measurement is the bar that fully separates 
science from philosophy. Accuracy, as opposed to precision, is the standard of 
measurement quality. Dismissal of concern for accuracy as philosophy exactly rejects the 
methodological distinction of science from philosophy. The reviewer has provided an 
inadvertent but very rich irony. 
 
 

2. ... several pages of basic radiative transfer theory to outline would should take 
only a few citations. 

 
As was also the case for submission 1 reviewer #1, the present reviewer has provided no 
leading citation demonstrating a prior evaluation of the [CO2]atm necessary for onset of 
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significant forcing. I have not found mention of this in Ramanathan’s papers, nor does it 
appear in Arrhenius’ foundational paper. 
 
Although this reviewer was apparently provided with the author’s responses to the 
submission 1 reviews, the reviewer missed noticing that the author searched several basic 
texts on climatology looking for, and not finding, mention of the [CO2]atm necessary for 
onset of significant forcing in their treatments of basic radiative transfer.  
 
The point of the radiative transfer section is to establish the [CO2]atm at which onset of 
climatologically significant forcing occurs. As was the case previously, the present 
reviewer has apparently missed this point.  
 
 

3. The bulk of what the author presumably feels is novel here is completely wrong. 
In particular, the author has not actually shown that errors are propagating in 
future projections,... 

 
R3.1 Systematic model error always propagates into futures projections. [Roy and 
Oberkampf, 2011; Vasquez and Whiting, 1998; 2005] There is no other way to establish 
predictive reliability.  
 
The reviewer is evidently proposing that model error might not propagate forward into a 
simulation. The comment is extraordinary, apparently averring that theory-bias TCF error 
can disappear from model output when the model is used to make a futures projection.  
 
Apart from magical intervention, it is hard to envision how TCF theory-bias error – a 
structural characteristic of the model itself -- will not be necessarily present in every 
GCM simulation step. 
 
R3.2 It impossible to show that TCF error is itself propagating into projections of future 
climate states because no independent observational data can exist to evaluate 
nonexistent future states. This is the very reason for propagated confidence intervals.  
 
The confidence intervals obtained by propagated error represent the reliability of the 
model-projected future state, not the expected magnitude of error itself in the simulation.  
Indeed, in the absence of observational referents, a simulated climate that includes 
systematic errors is indistinguishable from a simulated climate that is error-free. 
 
Confidence intervals represent the level of predictive uncertainty stemming from known 
model error; i.e., the low state of knowledge. Item 3 displays the same lack of 
understanding concerning confidence intervals and propagated error as evidenced in the 
other reviews. 
 
The reviewer is recommended to, “A Complete Framework for Verification, Validation, 
and Uncertainty Quantification in Scientific Computing.” [Roy and Oberkampf, 2011] 
Roy and Oberkampf examine in detail how to express the predictive uncertainty of non-
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linear numerical scientific models. GCMs are examples of such models. Propagation of 
error through the model is basic to validation and the evaluation of predictions.  
 
Section 4.5 of Roy and Oberkampf discusses uncertainty in model predictions. They, 
“extrapolate the uncertainty structure expressed by the validation metric to the 
application conditions of interest.” The validation metric is the observable. The condition 
of interest is the future state. That is, the error between the modeled reference state and 
the observed reference state is extrapolated into the model predictions where 
observational data are unavailable. 
 
They go on, “As is common in scientific computing, no experimental data is available for 
the application conditions of interest. Then the extrapolated model form uncertainty is 
included in the prediction of the model at the conditions of interest as an epistemic 
uncertainty.”  
 
“Extrapolated model form uncertainty” is the propagated theory-bias error that enters into 
simulated future states. Roy and Oberkampf exactly describe the analytical method 
applied in the manuscript. 
 
Manuscript equation 6 accurately simulates the air temperature projections of advanced 
GCMs. Its use for propagation of model error is thus analytically valid. 
 
 

4. ...but misunderstands the distinction between a base-state “forcing” and the 
uncertainties surrounding total cloud cover/forcing, from the uncertainties in 
climate change imbalances. The fact that GCMs do not have correct “absolute 
values” in variables such as TOA radiation balance, global mean temperature, 
cloud cover, etc is not novel. 

 
R4.1 The error in cloud forcing means that models are unable to resolve the global annual 
average thermal state of the troposphere; on average to within ±4 Wm-2. A climate 
change imbalance, i.e., GHG forcing, is necessarily undetectable in model output when it 
is two orders of magnitude smaller than a lower limit of model resolution. 
 
The ±4 Wm-2 of TCF error is a minimum of CMIP5 climate model error. As a complete 
accounting of error would show the energy resolution of climate models to be far poorer 
than this, the physically correct climate response to the imbalance represented by GHG 
emissions is well beyond the reach of any current simulation. 
 
There is no relief from this situation to be had in model anomalies. See the discussion 
under item R8.1 below. Manuscript section 2.4.3, which treats this problem explicitly, 
was not addressed by the reviewer. 
 
R4.2 The reviewer appears to believe that, when discussing the physically real climate, 
“uncertainties surrounding total cloud cover/forcing,” can be somehow removed “from 
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the uncertainties in climate change imbalances.” so as to isolate and assess the latter 
alone.  
 
However, the tropospheric thermal energy flux itself contains no information about its 
sources. Tropospheric Wm-2 arising from cloud forcing are not colored differently from 
Wm-2 entering from GHG forcing. Climate responds coherently to the totality of the 
tropospheric energy flux, not piece-wise to forcing from this or that source.  
 
When model cloud forcing error is ±4 Wm-2, the modeled thermal flux bath of the entire 
troposphere is unknown to the amount of ±4 Wm-2. How does the reviewer propose to 
establish the accuracy of a modeled tropospheric response to a “climate change 
imbalance” that is two orders of magnitude below the resolution of the model? 
 
Specifically, suppose the terrestrial climate were adjusting cloud cover to offset the 
energy due to GHG emissions such that there were no changes in tropospheric sensible 
heat. This adjustment would be worth 0.035 Wm-2, annually. With a model TCF annual 
average resolution of ±4 Wm-2, how would a model be capable of resolving an average 
0.035 Wm-2 cloud response? 
 
This problem was discussed in manuscript lines 429ff, and especially lines 655-675. 
However, the reviewer has not addressed it. 
 
R4.3 There is no manuscript claim of novelty concerning model error. The claim of 
novelty is in the development of a method to propagate error through GCM air 
temperature projections, and in the results following from the success of this exercise. 
 
 

5. There is no evidence provided by the author those known issues contaminate 
our understanding of attribution (which depends on the spatio-temporal evolution 
of patterns in stratospheric cooling, global OHC increases, etc)... 

 
R5.1 The propagation of systematic theory-bias model error, which the reviewer wrongly 
has rejected, provides exactly that evidence. 
 
CO2-induced cooling of the stratosphere occurs where radiative emission is completely 
dominant, well outside the regime of the water-vapor-dominated tropospheric climate. It 
offers no verification of the reliability of tropospheric climate modeling. 
 
R5.2 Evaluation of ocean heat content relies upon Argo buoy measurements. The 
reviewer may not realize that these buoys have never been field-calibrated. [Castro et al., 
2012; Emery et al., 2001; Hadfield et al., 2007; Xu and Ignatov, 2013] Therefore, the 
impact of environmental systematic effects on the accuracy of their measurements is 
almost entirely unknown. [Kawai et al., 2006] However, inter-comparisons among buoys 
suggest an rms inaccuracy of ±0.4-0.5 C.  
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The positive 0-700 m OHC trend as reported by Levitus, 0.4×1022 J-yr-1, [Levitus et al., 
2009] equates to an annual oceanic temperature increase of 0.004 C; about two orders of 
magnitude below the level of accuracy of SST measurements. Even 50×0.004 C = 0.2 C, 
i.e., the entire purported 1955-2005 temperature increase, is below the accuracy 
resolution of the SST data. The reported OHC clearly suffers from false precision and 
provides no evidence for attribution. 
 
The bias corrections in Levitus, 2009 do nothing to reduce measurement uncertainty, 
because the corrections utilize data from instruments that themselves were never field-
calibrated. The complete lack of knowledge concerning the intrinsic systematic in-situ 
XBT and MBT bias magnitudes means that subtracting a bias obtained from an 
independent data source may actually increase the error in the XBT/MBT record. 
 
 

6. ...or in climate sensitivity (for example, the IPCC AR5 plotted absolute global 
mean temperature against the equilibrium climate sensitivity of the CMIP5 
ensemble (Figure 9.42) and found no correlation between the absolute offsets in 
temperature and the sensitivity of the models). 

 
R6.1 The fact that different models display very different climate sensitivities is itself 
clear evidence for lack of physical understanding. The manuscript analysis does not make 
any connection between model TCF error and variation in model climate sensitivity, so 
the direct relevance of the reviewer’s comment is obscure. 
 
R6.2 Perhaps the reviewer is making comparison to Auxiliary Material Figure S7, which 
showed a strong linear correlation between the empirical wve CO2 forcing fraction and 
the 1990 base global air temperature for the CMIP3 models used for the AR4 SRES 
simulations. 
 
Figure 9.42 in the 5AR uses data taken from IPCC AR5 Figure 9.8 and Table 5. Figure 
9.8a and inset show air temperature anomaly projections from a variety of climate 
models, each referenced to its own 1960-1990 mean. As these models all reproduce the 
observed HadCRUT4 trend, and nevertheless display different climate sensitivities, they 
all must have been tuned using anti-correlated parameters, following Kiehl [Kiehl, 2007], 
in order to match the observations.  
 
It is no surprise, then, that these climate sensitivities do not correlate with their absolute 
1960-1990 mean, because with anti-correlated tuning every published model mean will 
have necessarily been removed from a model mean driven by climate sensitivity alone. 
Thus there is no relevant comparison between AR5 Figure 9.42 and manuscript Figure 
S7. 
 
 

7. There is much further extensive discussion of the model performance and 
biases in that chapter, which I urge the author to read.  
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R7.1 Looking through AR5 Chapter 9, “Evaluation of Climate Models,” one notes that it 
is completely silent on the failed perfect model tests reported by Collins and by Boer. 
[Boer, 2000; Boer and Lambert, 2008; Collins, 2002] Chapter 8 in the 4AR, “Climate 
Models and Their Evaluation,” likewise completely ignored these tests. The reviewer can 
satisfy him/herself on the facts of this matter, and is invited to ponder why the failed 
perfect model tests were not discussed in AR chapters that purport model evaluation. 
 
AR5 Chapter 10 mentions perfect model tests, but only briefly and under 10.6.1.2 
Precipitation Extremes, rather than in a context of air temperature. The perfect model 
results are misrepresented as indicating the likelihood of anthropogenic attribution in late 
20th century extremes, rather than more correctly as indicating the poor likelihood of 
attribution even given a perfect climate model. 
 
AR5 Chapter 11 discusses the failed perfect model tests under 11.2.1.1 Predictability 
Studies, and then puts the best possible face on the fact that predictability is poor even 
when models are perfect (FAQ 11.1). 
 
R7.2 To be clear: the poor perfect model test results show that even advanced GCMs 
cannot correctly partition energy into the climate subsystems at the resolution necessary 
to reveal the effect of 35 mWm-2 annual forcing increase. The confidence intervals 
produced from propagation of these errors will always be larger than any simulated future 
GHG effect, because the magnitude of error is much larger than the magnitude of GHG 
forcing. 
 
R7.3 One also notes that the HadCRUT4 trend in AR5 Figure 9.8 does not display the 
very significant error bars that follow from known systematic measurement error of air 
temperature sensors. [P. Frank, 2010; Hubbard and Lin, 2002; Hubbard et al., 2001; Lin 
et al., 2005]  
 
 

8. I have not seen all of the review comments to the previous manuscript, but I 
was provided with the author responses to those reviews, and was able to see 
several italicized portions of previous review comments. I think that previous 
reviewer #1, in particular, already diagnosed many of the problems in this 
current study. The responses provided by the author are not compelling. 

 
R8.1 The primary criticism of submission 1 reviewer #1 (S1R1) was a “confusion of 
base-state forcing with feedback.” The reviewer elaborated that comment as, “the 
overwhelming error in this paper is how this uncertainty in cloud forcing is applied in the 
future projections made using the empirical linear model. Each GCM starts simulations 
in ~1850 in an equilibrium state, thus all of the errors in base state cloud forcing are 
already represented in the global mean temperature in 1850.” 
 
S1R1 is apparently claiming that differencing removes model errors, because all model 
cloud forcing errors are already represented in the base state climate.  I.e., a constancy of 
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error exists in the equilibrated 1850 base-state and in subsequent modeled states. 
Differencing then removes this constant error.  
 
But the error treated in the manuscript is not the difference between a modeled climate 
and its subsequent manifestation. The error is the difference between a modeled climate 
and its target observations; an entirely different comparison. 
 
Let me try to make the problem clear. Let the physically real 1850 climate be Cpr1850. 
Suppose the equilibrated modeled 1850 climate plus its error is Cm1850 = Cpr1850+em1850. 
The error in the equilibrated simulation is then em1850 = Cm1850-Cpr1850. How are the 
structure and magnitude of this error to be determined? The observational details of the 
1850 climate are not known. 
 
The simulated climate for 1851 is then Cm1850+ΔEperturbations (Wm-2) ⇒ Cm1851. Then em1851 
= Cm1851-Cpr1851. As em1850 is both unknown and is instrumental in producing Cm1851 with 
its error (em1851), how is it determined that in fact em1850 = em1851? The magnitude of em1851 
is as non-computable as em1850: there are few or no known 1851 climate observables. 
 
The physical errors in the baseline 1850 climate are thus unknown and unknowable. So 
are most of the errors in subsequent simulated climate states with respect to most of the 
rest of the target climate physical observables. How, then, can it be claimed that 
differencing model simulations removes physical error? 
 
This further discussion will enter into the revised manuscript. 
 
As a relevant aside, the very large uncertainties in the global average annual air 
temperature record, [Emery et al., 2001; P. Frank, 2010; Patrick Frank, 2011; Hubbard 
and Lin, 2002; Lin et al., 2005; Saur, 1963] must also and necessarily enter into the 
uncertainty in the expectation values of any GCM using that record as a physical 
validation target. 
 
R8.2 Although not specifically mentioned the reviewer may have linear perturbation 
theory (LPT) in mind in support of removing model error by differencing from a base 
state. LPT describes a linear response of stochastic dynamical processes to small 
perturbations. Climate models may be constructed to have this property. 
 
If the surmise is correct, then R1R1 implied that LPT describes the response of the 
physical climate and thus is a valid physical theory of climate. However, validation is 
something to be demonstrated, not assumed.  
 
Such a demonstration requires an exercise analogous to the 1850 validation outlined in 
R8.1. 
 
In fact, LPT validation tests have been carried out, at least partially, in comparisons of 
model hindcasts vs. physical climate observables. [Jiang et al., 2012; Klein et al., 2013; 
Lauer and Hamilton, 2013; Williams and Webb, 2009] In every case, model errors appear 
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in the Cmyyyy-Cpryyyy differences from hindcasted climates. Further, model differencing 
anomalies are not of zero error with respect to observational climate anomalies. 
 
The error discussed in the manuscript is model vs. observation. LPT does not necessarily 
apply, first because LPT has not been demonstrated to be a physically correct description 
of climate response, and second because such tests as do exist do not validate the LPT 
prediction of zero anomaly error.  
 
There is no reason to think that model error disappears when a model result is differenced 
against corresponding climate observables. Nor, indeed, is there any reason to think that 
model error disappears when differenced against itself. 
 
As noted in R8.1, there is also no reason to think that uncertainty is zero when a base-
state model that is an incorrect representation of its energy state is projected using a 
biased theory.  
 
Manuscript section 2.4.3 discussed this in detail, but was apparently ignored by the 
reviewer. 
 
It is finally not surprising that the present reviewer would see the R1R1 criticism 
sympathetically, because the same mistaken assumption of removal of physical error 
through model differencing is evident in review item 4. 
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